买Phos-tag™ 预制胶送配套试剂


买Phos-tag™ 预制胶送配套试剂

买Phos-tag™ 预制胶送配套试剂

【活动编号:PHOSTAGOFFER

本活动已结束

★ 无任何放射性元素及化学标记!

★ 无需任何磷酸化抗体!

购买下表任意产品,赠送配套试剂(3选1)

产品编号

产品名称

包装

198-17981

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well, 83×100×3.9 mm

Phos-tag™ 预制胶50 μmol/L,7.5%,17孔,BioRad型 现货!

5 EA

195-17991

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well, 83×100×3.9 mm

Phos-tag™ 预制胶50 μmol/L,12.5%,17孔,BioRad型 现货!

5 EA

192-18001

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well, 100×100×6.6 mm

Phos-tag™ 预制胶50 μmol/L,7.5%,17孔,Life Technologies型

5 EA

199-18011

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well, 100×100×6.6 mm

Phos-tag™ 预制胶50 μmol/L,12.5%,17孔,Life Technologies型

5 EA

以下配套试剂3选1:


● 019-26211 AquaBlot™ 10×高效率转膜buffer 30 mL

● 139-00722 四水氯化锰(II) 25 g

● 012-11872 琼脂粉末 25 g


SuperSep Phos-tag™ 是一种预制胶,预先加入50 μmol/L 的Phos-tag™ Acrylamide,打开包装即可直接使用。预制胶中含有Zn2+作为金属离子,在中性凝胶缓冲液中保存稳定性很好,得到的结果条带也很整齐。



◆原理


买Phos-tag™ 预制胶送配套试剂



◆特点

● 预制胶使用安全

● 即开即用

● 有效期长达6个月

● 操作与普通SDS-PAGE一样


买Phos-tag™ 预制胶送配套试剂

 制胶规格

 BioRad型:83×100×3.9(mm)
 Life Technologies型:100×100×6.6(mm)

 孔数

 17

 孔容积

 25 μL

 Phos-tag™ 浓度

 50 μmol/L

 丙烯酰胺浓度

 7.5%、12.5%

 ZnCl浓度

 100 μmol/L

◆预制胶没有你想要的浓度?尝试一下自己配胶

产品编号

产品名称

包装

304-93521

Phos-tag™ Acrylamide AAL-107
Phos-tag™ 丙烯酰胺 现货!

10 mg

购买赠送以下配套试剂(3选1):


● 019-26211 AquaBlot™ 10×高效率转膜buffer 30 mL

● 139-00722 四水氯化锰(II) 25 g

● 012-11872 琼脂粉末 25 g


点击此处下载产品彩页

详情请联系:富士胶片和光客服人员或当地代理商

通用型磷酸化“一抗”:Phos-tag™ 生物素BTL-105


通用型磷酸化“一抗”:Phos-tag™ 生物素BTL-105

通用型磷酸化“一抗”:Phos-tag™ 生物素BTL-105


【本活动已结束】


Phos-tag™是一种金属螯合物,能与磷酸离子特异性结合,可识别和捕捉所有氨基酸位点上的磷酸化基团。BTL-105是一种标记物(MW:880),由生物素与Phos-tag™结合,由此建立PVDF膜上的磷酸化蛋白的灵敏检测方法。本品是粉剂,在4℃可保存至少一年。

通用型磷酸化“一抗”:Phos-tag™ 生物素BTL-105

BTL-105分子结构

◆特点

● PVDF膜无需封闭

● 支持包括质谱分析、免疫印迹在内的后续操作

● 操作过程与使用HRP标记抗体的实验相似


◆原理

通用型磷酸化“一抗”:Phos-tag™ 生物素BTL-105

◆产品列表


产品编号

产品名称

规格

308-93541

Phos-tag™ Biotin BTL-105
Phos-tag™ 生物素BTL-105

10 mg

BTL-105已展开金秋促销,下单即可获得优惠价,仅限2020-09-15 ~ 2020-12-01,赶紧联系客服,获得更多实验资讯吧!


Phos-tag™ MG-Bead 利用磁珠富集磷酸化蛋白

Phos-tag™ MG-Bead
利用磁珠富集磷酸化蛋白

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

利用磁珠富集磷酸化蛋白Phos-tag™ MG-Bead                              利用磁珠富集磷酸化蛋白

Phos-tag™ MG-Bead

Phos-tag™ MG-Bead是 phos-tag与涂有琼脂糖的磁珠连接而成的产品。磁珠上的phos-tag与磷酸化蛋白结合后,通过使用磁力架吸附磁珠即可完成富集。除蛋白外,还可以富集其他带有磷酸基团的物质。

Phos-tag™ MG-Bead                              利用磁珠富集磷酸化蛋白

使用此产品的论文


用于磷酸化SARS-CoV-2 核衣壳蛋白的分离

Yoko, I. et al. : Journal of Proteomics., 255 104501 (2022)

◆使用方法

Phos-tag™ MG-Bead                              利用磁珠富集磷酸化蛋白

1. 将5 ~ 50 µL Phos-tagTM MG-Bead磁珠加入1.5 mL试管中。

2. 使用磁力架收集管内磁珠,并去除保存液。

3. 用0.1 M Bis-tris-AcOH缓冲液使磁珠重悬,并摇匀。重复此步骤两次。

4. 取50 ~ 200 µL溶解于0.1 M Bis-tris-AcOH缓冲液的样品于1.5 mL试管中,并在室温下摇匀孵育 3 分钟。

5. 用磁力架收集管内磁珠,并去除穿透液。

6. 使用0.1 M Bis-tris-AcOH缓冲液重悬磁珠,摇匀30秒,用磁力架收集管内磁珠,并去除洗涤液。重复此步骤三次。

7. 用蒸馏水使磁珠重悬,摇匀30秒。震荡后,用磁力架收集管内磁珠,去除洗涤液。

8. 为洗脱与磁珠结合的磷酸化化合物,加入pyrophoshate缓冲液,并摇匀30 秒。重复此步骤五次。

9. 分析洗脱的磷酸化化合物。

*关于操作所需的相关溶液成分,请点击参阅本产品的protocol。

◆应用实例

富集磷酸化肽段

磁珠量:50 µL

样品:胰蛋白酶消化的 β-酪蛋白溶液(包括具有 1 个磷酸化位点和 4 个磷酸化位点的肽)

洗涤缓冲液:0.1 M Bis-tris-AcOH (含0.1 M NaCl) pH6.8

洗脱缓冲液:0.1 M Na4P2O7 – 0.1M AcOH pH7.0

Phos-tag™ MG-Bead                              利用磁珠富集磷酸化蛋白


分别对样品溶液(sample)、穿透液(FT),洗脱液(E1)进行HPLC分析,结果如图所示,在洗脱液(E1)中成功检出两种磷酸化肽、。

FT:上述操作步骤5中的.穿透液。

E1:上述操作步骤8的洗脱液。



分离NAD和NADP

磁珠量:50 µL

样品:含有 NAD(100 nmol) 和 NADP(100 nmol) 的溶液

洗涤缓冲液:0.1 M Bis-tris-AcOH pH6.8

洗脱缓冲液:0.1 M Na4P2O7 – 0.1M AcOH pH7.0

Phos-tag™ MG-Bead                              利用磁珠富集磷酸化蛋白

分别对各步骤的溶液进行HPLC分析,并对其结果进行解析。如图,穿透液和洗涤液中检测出NAD,通过反复洗涤,可以分离出高纯度的NAD。并在洗脱液检测出NADP,通过重复洗脱步骤,可以分离出纯度超过 99% 的NADP。

FT:上述操作步骤5的穿透液。

W1~W3:上述操作步骤6.的洗涤液。数字为洗涤次数。

W4:上述操作步骤7.的洗涤液。

◆相关产品

磁珠捕获磁力架

Phos-tag™ 丙烯酰胺

SuperSep Phos-tag™ 预制胶

点击此处查看产品系列

点击此处查看产品宣传页


※ 本页面产品仅供研究用,研究以外不可使用。

Phos-tag™ MG-Bead                              利用磁珠富集磷酸化蛋白

Phos-tag™ MG-Bead Protocol

产品列表
产品编号 产品名称 产品规格 产品等级 备注
385-20061 Phos-tag™ MG-Bead
Phos-tag™ MG-Bead磁珠
100 μL

Phos-tag™ 凝胶荧光染料

Phos-tag™ 凝胶荧光染料

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ 凝胶荧光染料Phos-tag™ 凝胶荧光染料

 


Phos-tag™ 凝胶荧光染料,是一种可在生理pH范围内,对凝胶中的磷酸化蛋白进行染色的荧光染料。进行了SDS-PAGE,用本产品处理聚丙烯酰胺凝胶,可以对磷酸化蛋白进行特异性染色。

本系列有波长不同的 Yellow(黄)、Magenta(品红)、Cyan(蓝绿)、Aqua(浅绿)四种颜色。每管规格为 0.2 mg,可对约20个迷你凝胶进行染色。

 

购买前请注意:

使用Phos-tag 凝胶荧光染料,需要用到 Mixed reagents for Phos-tag™ Common Solution 5×(产品编号:383-15231)。请一同购买。


Phos-tag™ 凝胶荧光染料



◆特点


● 高灵敏度

● 在生理pH下即可染色

● 选择性与pSer、 pTyr、 pHis以及pAsp残基结合

● 无需放射性物质、化学物质标签、抗体

● 2小时内完成染色

◆产品对比


                  其他公司产品A


● 凝胶pH:2~4

● 5个步骤(固定、清洗、染色、脱色、清洗)

● 所需时间:≧5小时

● 溶液更换次数:11次

● 卵清蛋白检测上限:~5 ng/lane

  Phos-tag™ Magenda(品红)


● 凝胶pH:7~8(不进行脱磷酸化)

● 3个步骤(固定、染色、清洗)

● 所需时间:≦2小时

● 溶液更换次数:4次

● 卵清蛋白检测上限:~1 ng/lane

◆应用实例①


磷酸化蛋白与非磷酸化蛋白的染色 Phos-tag™ Aqua(浅绿)

Phos-tag™ 凝胶荧光染料

Lane.No.()内为磷酸基团数目


1. Marker

2. α-酪蛋白(9P)

3. 经ALP处理的α-酪蛋白

4. β-酪蛋白(5P)

5. 经ALP处理的β-酪蛋白

6. 卵清蛋白(2P)

  7. 经ALP处理的卵清蛋白

  8. 胃蛋白酶(1P)

  9. 经ALP处理的胃蛋白酶

10. β-半乳糖苷酶

11. 牛血清白蛋白

12. 碳酸酐酶

Phos-tag™ Aqua(浅绿)染料选择性:用Phos-tag™ Aqua(浅绿)对10%(w/v)的PAGE胶进行染色,其中分别含有四组完整的以及经ALP(碱性磷酸酶)处理的磷酸蛋白(α-酪蛋白,β-酪蛋白,卵清蛋白和胃蛋白酶各1 μg)(左),然后使用考马斯亮蓝CBB G-250染色(右)。

成功特异性地检测出SDS-PAGE后的磷酸化蛋白。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师

 


◆应用实例②


使用Phos-tag™ 荧光凝胶染料的组氨酸、天门冬氨酸的磷酸化分析

细菌通过将信息从组氨酸激酶EnvZ传递到应答调控子OmpR来调节基因的表达。分别分析有自磷酸化能力的EnvZ激酶和被EnvZ催化的OmpR中组氨酸和天门冬氨酸的磷酸化。


Phos-tag™ 凝胶荧光染料

Phos-tag™ 凝胶荧光染料

可以确认Phos-tag™ Magenta(品红)和Phos-tag™ SDS-PAGE 这两种试剂中的His和Asp的磷酸化随激酶的处理时间经过不断增强。尤其是使用Phos-tag™ Magenta(品红)时,可以仅检测出His磷酸化或Asp磷酸化。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师

 


◆应用实例③


用于筛选组氨酸激酶抑制剂(新型抗生素)

使用Phos-tag™荧光凝胶染料,筛选组氨酸激酶抑制剂。


Phos-tag™ 凝胶荧光染料


证实磷酸化依赖组氨酸激酶抑制剂浓度被抑制。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师



参考文献


“Quantitativemonitoring of His and Asp phosphorylation in a bacterial signaling system byusing Phos-tag Magenta/Cyan fluorescent dyes”, Emiko Kinoshita-Kikuta, HiroshiKusamoto, Syogo Ono, Keisuke Akayama, Yoko Eguchi, Masayuki Igarashi, ToshihideOkajima, Ryutaro Utsumi, Eiji Kinoshita, Tohru Koike, Electrophoresis, 2019

◆使用方法

Phos-tag™ 凝胶荧光染料

※调整平衡及清洗溶液以及染色溶液必须使用Mixed reagents for Phos-tag™ Common Solution 5× (产品编号:383-15231)。

◆激发波长/荧光波长

Phos-tag™ Yellow(黄) Phos-tag™ Magenta(品红)
Phos-tag™ 凝胶荧光染料 Phos-tag™ 凝胶荧光染料

Ex/Em=505 nm/514 nm



Ex/Em=547 nm/561 nm



Phos-tag™ Cyan(蓝绿) Phos-tag™ Aqua(浅绿)
Phos-tag™ 凝胶荧光染料 Phos-tag™ 凝胶荧光染料
 Ex/Em=643 nm/661nm Ex/Em=551 nm/564 nm



◆产品列表


产品编号 产品名称 规格
380-15241 Phos-tag™ Yellow
Phos-tag™ 黄色荧光染料
0.2 mg
386-15221 Phos-tag™ Magenta
Phos-tag™ 品红荧光染料
0.2 mg
382-15201 Phos-tag™ Aqua
Phos-tag™ 浅绿荧光染料
0.2 mg
389-15211 Phos-tag™ Cyan
Phos-tag™ 蓝绿荧光染料
0.2 mg
383-15231

Mixed reagents for Phos-tag™ Common Solution

Phos-tag™ 5×染色通用混合溶液

1 EA


◆相关产品


Phos-tag™ Acrylamide

产品编号 产品名称 规格
304-93521 Phos-tag™ Acrylamide AAL-107
Phos-tag™ 丙烯酰胺
10 mg
300-93523 2 mg
304-93526 Phos-tag™ Acrylamide AAL-107 5 mM Aqueous Solution
Phos-tag™ 丙烯酰胺5 mM水溶液
0.3 mL



SuperSep™ Phos-tag


用于Bio-Rad伯乐电泳仪

货号

品名

电泳仪

规格

198-17981

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well,

83×100×3.9mm

Mini-PROTEAN® 

Tetra Cell

(Bio-Rad Laboratories, Inc.)

5 块

195-17991

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well,

83×100×3.9 mm

5 块

用于Life Technologies伯乐电泳仪

货号

品名

电泳仪

规格

192-18001

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well,

100×100×6.6 mm

XCell SureLock® 

Mini-Cell

(Life Technologies, Inc.)

5 块

199-18011

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well,

100×100×6.6 mm

5 块


Phos-tag Biotin


产品编号 产品名称 规格
301-93531 Phos-tag™ Biotin BTL-104
Phos-tag™ 生物素
10 mg
308-97201 Phos-tag™ Biotin BTL-111 1 mM Aqueous Solution
Phos-tag™ 生物素1 mM水溶液
0.1 mL


Phos-tag Agarose


产品编号 产品名称 规格
302-93561 Phos-tag™ Agarose
Phos-tag™ 琼脂糖
0.5 mL
308-93563 3 mL

Phos-tag Tip

产品编号 产品名称 规格
387-07321-8P Phos-tag™ Tip
Phos-tag™ 琼脂糖枪头
8 pcs
387-07321 8 pcs×10


Phos-tag Mass Analytical Kit


产品编号 产品名称 规格
305-93551 Phos-tag™ Mass Analytical Kit
    Phos-tag™ 质谱分析试剂盒
1 set

※ 本页面产品仅供研究用,研究以外不可使用。


Phos-tag™ SDS-PAGE相关产品

Phos-tag™ SDS-PAGE相关产品

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ SDS-PAGE相关产品Phos-tag SDS-PAGE相关产品

◆Reagents for Phos-tag™ SDS-PAGE gel preparation

 

Product Name

Pkg. Size

Wako

Cat. No.

Use Application

30 w/v% Acrylamide/Bis Mixed solution(29:1)

500 mL

015-25635

Ready-to-use"Solution A".30%T, 3.3%C

Agarose H(High-strength type)

1 g

315-01203

High-strength Agarose has high strength even in a low-agarose environment and is suitable for electrophoretic migration of large nucleic acid fragments. It can be used in a concentration range of 0.2 – 1% and a separation range of 1 – 200 kbp.

10 g

319-01201

25 g

317-01202

10% SDS Solution

100 mL

311-90271

Ready-to-Use "Solution D"

500 mL

313-90275

Manganese(Ⅱ) Chloride Tetrahydrate,
  99.0+ %(Titration)

25 g

134-15302

for Molecular Biology Please use for preparation of "Solution F"

100 g

136-15301

Zinc Chloride

25 g

268-01902

for Molecular Biology. Please use for preparation of "Solution M"

Bis-Tris

100 g

345-04741

Please use for preparation of "Solution N"

Sodium Hydrogensulfite〈JIS   Special Grade〉

25 g

196-01372

Please use for preparation of "Solution O"

100 g

198-01371

Sodium Hydrogensulfite
  〈For Molecular Biology〉

100 g

190-16461

MOPS

100 g

345-01804

Please use for preparation of "Solution P"

250 g

341-01801

MOPS〈For Molecular Biology〉

100 g

341-08241

500 g

343-08245

Separating Gel Buffer Solution (x4)

250 mL

192-11041

Ready-to-Use mixed solution of“Sol. B”and“Sol. D”for preparation of Resolving Gel. Contains SDS.

Stacking Gel Buffer Solution (x4)

250 mL

199-11051

Ready-to-Use mixed solution of“Sol.C”and“Sol. D”for preparation of Stacking Gel. Contains SDS.

N,N,N',N'-Tetramethylethylenediamine (TEMED)

25 mL

205-06313

for Electrophoresis

10 w/v% Ammonium Peroxodisulfate Solution
  (Ammonium Persulfate Solution)

25 mL

019-15922

Ready-to-Use“Solution G”



Premixed Buffers


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

Running Buffer Solution (x10)

1 L

184-01291

Ready-to-Use concentrated "Solution H"

SDS-PAGE 10x Running Buffer

1 L

312-90321

Ready-to-Use concentrated "Solution H"

5 L

318-90323

SDS-PAGE Buffer, pH 8.5

5 L

192-16801

Ready-to-Use "Solution H", 1×buffer.

Tricine Running Buffer Solution (×10)

1 L

200-17071

Composition: 0.5 M Tris/0.5 M Tricine/1% SDS

Sample Buffer Solution (2ME+) (×2)

25 mL

196-11022

Sample buffer for Laemmli SDS-PAGE containing 2-mercaptoethanol

Sample Buffer Solution
  with 3-Mercapto-1,2-propanediol (×2)

25 mL

196-16142

Laemmli Sample Buffer containing   3-mercapto-1,2-propanediol (non-hazardous chemical) as substitute for 2-ME

AquaBlot™ 10×High Efficiency Transfer Buffer

1 L

015-26213

Can use it to transfer to a

menbrane with high efficience.



◆Enzyme for Dephosphorylation


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

Alkaline Phosphatase(for   Biochemistry)

50 U

018-10693

Applicable to dephosphorylation of proteins

100 U

012-10691



◆Reagents for Staining


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

Quick CBB Plus

250 mL

174-00553

Ready-to-Use Sol. K. Fixing and destaining procedure are not required.
No organic solvents are necessary.
Protein bands are stained in 10 minutes.

1 L

178-00551

Quick-CBB
  ・Staining solution A: 1L x 1
  ・Staining solution B: 1L x 1

2 L

299-50101

By mixing staing solution A and B,   ready-to-Use Sol. K

Silver Stain MS Kit

20 tests

299-58901

Modified proteins by glycosilation and/or phosphorylation can be detected sub-nanogram level on the electrophoretic gel.

Silver Stain Kit Wako

for 10 gels

299-13841

50~100 times more sensitive than CBB method.

Silver Stain Ⅱ Kit Wako

for 10 gels

291-50301

This kit contains Stopper, which can be adjusted the staining strength.

Negative Gel Stain MS Kit

20 tests

293-57701

Applicable to mass analysis and Western blot



Protein Size Marker


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

WIDE-VIEW Prestained Protein Size Marker Ⅲ

25 μL

236-02463

A recommendable prestained marker used with Phos-tag™ SDS-PAGE because obtained bands are less distorted.

500 μL

230-02461

500 μL x3

234-02464



Positive Control(for confirmation of separation capacity of Phos-tag™ SDS-PAGE)


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

α-Casein, from BovineMilk, Dephosphorylated

1 mg

038-23221

Mixture of phosphylated and dephosphorylated α-casein

10 mg

034-23223



◆Electrophoresis Apparatus ・ Precast Gels


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

EasySeparator

1 unit

058-07681

An electrophoresis tank for SuperSep precast polyacrylamide gels.

SuperSep Ace, 6%, 13 wells

10 gels

195-15171

Prior to use of SuperSep Phos-tag™ PAGE, please use these as sample confirmation.
Expired in 9 months after manufacture

SuperSep Ace, 7.5%, 13 wells

10 gels

198-14941

SuperSep Ace, 7.5%, 17 wells

10 gels

191-14931

SuperSep Ace, 10%, 13 wells

10 gels

195-14951

SuperSep Ace, 10%, 17 wells

10 gels

192-14961

SuperSep Ace, 12.5%, 13 wells

10 gels

199-14971

SuperSep Ace, 12.5%, 17 wells

10 gels

196-14981

SuperSep Ace, 15%, 13 wells

10 gels

193-14991

SuperSep Ace, 15%, 17 wells

10 gels

190-15001



◆Reagents for Western Blotting


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

ImmunoStar LD*
・Luminescence solution A
・Luminescence solution B

200 cm2

296-69901

Highly sensitive (femto gram level) immunoblotting, utilizing detection by enhanced chemiluminescence using a unique luminol derivative L-012 as a substrate.
Not available for sale in the US and Europe.

1,000 cm2

292-69903

2,000 cm2

290-69904

ImmunoStar Zeta*

200 cm2

291-72401

Use for detection of proteins between the middle and low femto gram levels. Has stable, long-lasting luminescence signal.

1,000 cm2

297-72403

2,000 cm2

295-72404

ImmunoStar Basic*

200 cm2

295-75101

A cost-effective, stable and long-lasting product.

2,000 cm2

291-75103

5,000 cm2

299-75104

Immuno Enhancer

2 assays

294-68601

Ready-to-Use Immunoreaction Enhancer for Western blotting and ELISA

10 assays

290-68603

40 assays

298-68604

* : Not available for sales in the US and Europe.

 

相关资料


Phos-tag™ SDS-PAGE相关产品

【参考文献系列】Phos-tag™ SDS-PAGE

Phos-tag™ 琼脂糖枪头 Phos-tag™ Tip

Phos-tag™ 琼脂糖枪头
Phos-tag™ Tip

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ 琼脂糖枪头Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

Phos-tag™ Tip

  可特异性捕捉磷酸基团的功能性分子“Phos-tag ™”的磷酸化肽纯化用枪头。

  枪头里含有 Phos-tag ™ 琼脂糖,是即开即用的前处理工具,适用于生理状态下低分子量磷酸化分子(核酸和多肽等)的分离和富集。


原理


把 Phos-tag™ Tip 装在注射器(购买产品附送)上使用。


                                   

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

 

                                                           

Phos-tag ™ Tip 的结构


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

优点、特色


 操作时间少于30分钟 

 高回收率可重复利用

 无需昂贵仪器

 缓冲液为生理 pH 条件下


案例、应用


分离磷酸化肽使用例


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip



Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot 检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™Agarose)及质谱分析 MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


◆Phos-tag™ 的基本结构

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip



原理:


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip



特点:


●   与 -2 价磷酸根离子的亲和性和选择性高于其它阴离子

●   在 pH 5-8 的生理环境下生成稳定的复合物

相关应用:


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

相关产品:

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离:SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离:预制胶中含有 50 μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测:代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化:通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析:用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™ 由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

Phos-tag 第6版说明书

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

Phos-tag系列 ver. 8


【参考文献】


·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.


References on Phos-tag™ Chemistry

  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

  • Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

  • Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

  •  Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

  • Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

  • Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture MoleculeAnalytical Chemistry77, 3979-3985 (2005), K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama

  • Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike

  • Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pHProteomics, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike

  • Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry360, 160-162 (2007), S. Yamada, H. Nakamura, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and Y. Shiro

  • Label-free kinase profiling using phosphate-affinity polyacrylamide gel electrophresisMolecular & Cellular Proteomics, 6, 356-366 (2007), E. Kinoshita-Kikuta, Y. Aoki, E. Kinoshita, and T. Koike

  • A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+.Phos-tag.)

  • Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag MoleculeJournal of Biomolecular Techniques18, 278-286 (2007), T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura

  • A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresisAnalytical Biochemistry378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate- affinity SDS-PAGEProteomics, 8, 2994-3003 (2008), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, S. Yamada, H. Nakamura, Y. Shiro, Y. Aoki, K. Okita, and T. Koike

  • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathwayNature Structural & Molecular Biology15, 1138-1146 (2008), M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge, and M. Takata

  • to Page top

  • Two-dimensional phosphate affinity gel electrophoresis for the analysis of phosphoprotein isotypes Electrophoresis30, 550-559 (2009), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, Y. Aoki, S. Ohie, Y. Mouri, and T. Koike

  • Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leavesBioscience, Biotechnology, and Biochemistry,73, 1293-300 (2009), T. Tanaka, G. Horiuchi, M. Matsuoka, K. Hirano, A. Tokumura, T. Koike, and K. Satouchi

  • A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptidesAnalytical Biochemistry388, 235-241, (2009), K. Takiyama, E. Kinoshita, E. Kinoshita-Kikuta, Y. Fujioka, Y. Kubo, and T. Koike

  • Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysatesAnalytical Biochemistry389, 83-85, (2009), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agaroseProteomics9, 4098- 4101 (2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Ujihara, and T. Koike

  • Separation and detection of large phosphoproteins using Phos-tag SDS-PAGENature Protocols4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

  • A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tagRapid Communications in Mass Spectrometry24, 1075-1084 (2010), J. Morishige, M. Urikura, H. Takagi, K. Hirano, T. Koike, T. Tanaka, and K. Satouchi

  • Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexesClinical Biochemistry43, 302-306 (2010), E. Kinoshita, E. Kinoshita-Kikuta, H. Nakashima, and T. Koike

  • The DNA-binding activity of mouse DNA methyltransferase 1 is ragulated phosphorylation with casein kinase 1σ/εBiochemical Journal427, 489-497 (2010), Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita


产品列表
产品编号 产品名称 产品规格 产品等级 备注
387-07321 Phos-tag™ Tip 
Phos-tag™ 琼脂糖枪头
8个

Phos-tag™ 琼脂糖 Phos-tag™ Agarose

Phos-tag™ 琼脂糖
Phos-tag™ Agarose

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ AgarosePhos-tag™ 琼脂糖                              Phos-tag™ Agarose

亲和层析纯化磷酸化蛋白

填入色谱柱中使用。可分离、纯化、浓缩磷酸化蛋白。不使用界面活性剂、还原剂,可得到状态近似生物体内的磷酸化蛋白。

Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

原理

Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

优点、特色

● 无需使用还原剂或表面活性剂即可纯化

● 与亲和层析方法类似。

● 可在1小时内纯化磷酸化蛋白。

● Phos-tag™ Agarose 捕获结合到 Tyr、Thr、Ser、Asp、His 等氨基酸、糖类、脂类上的无机磷酸根和大量二价磷酸根。

● 可在生理条件下(pH7.5)捕捉蛋白。

● 纯化后的产物可用于 Co-IP 实验和其他蛋白活性实验。

案例、应用:

【使用例子:A431 裂解液中的磷酸化蛋白的纯化】

把Phos-tag™ 填充到柱里,再加上 A431 裂解液。

SYPRO Ruby 染色(左图)再使用 Anti-p Tyr 抗体进行免疫印迹(右图),检测出结果。

结果确认磷酸化蛋白浓缩在柱吸附层里。

M:分子量标记

Lane 1:未吸附层

Lane 2:吸附层

Lane 3:柱清洗层

Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™ 是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot 检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™ Agarose)及质谱分析 MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


Phos-tag™ 的基本结构


Phos-tag™ 琼脂糖                              Phos-tag™ Agarose


特点


与 -2 价磷酸根离子的亲和性和选择性高于其它阴离子

在 pH 5-8 的生理环境下生成稳定的复合物

相关应用


Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

相关产品

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离预制胶中含有 50 μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析:用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™ 由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:http://phos-tag.jp

Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

Phos-tag 第6版说明书

Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

Phos-tag系列 ver. 8



Phos-tag™ 琼脂糖                              Phos-tag™ Agarose

说明书

【参考文献】


·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.

References on Phos-tag™ Chemistry

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture MoleculeAnalytical Chemistry77, 3979-3985 (2005), K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama

Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike

Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pHProteomics, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike

Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry360, 160-162 (2007), S. Yamada, H. Nakamura, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and Y. Shiro

Label-free kinase profiling using phosphate-affinity polyacrylamide gel electrophresisMolecular & Cellular Proteomics, 6, 356-366 (2007), E. Kinoshita-Kikuta, Y. Aoki, E. Kinoshita, and T. Koike

A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+.Phos-tag.)

Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag MoleculeJournal of Biomolecular Techniques18, 278-286 (2007), T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura

A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresisAnalytical Biochemistry378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate- affinity SDS-PAGEProteomics, 8, 2994-3003 (2008), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, S. Yamada, H. Nakamura, Y. Shiro, Y. Aoki, K. Okita, and T. Koike

FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathwayNature Structural & Molecular Biology15, 1138-1146 (2008), M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge, and M. Takata

Two-dimensional phosphate affinity gel electrophoresis for the analysis of phosphoprotein isotypes Electrophoresis30, 550-559 (2009), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, Y. Aoki, S. Ohie, Y. Mouri, and T. Koike

Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leavesBioscience, Biotechnology, and Biochemistry,73, 1293-300 (2009), T. Tanaka, G. Horiuchi, M. Matsuoka, K. Hirano, A. Tokumura, T. Koike, and K. Satouchi

A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptidesAnalytical Biochemistry388, 235-241, (2009), K. Takiyama, E. Kinoshita, E. Kinoshita-Kikuta, Y. Fujioka, Y. Kubo, and T. Koike

Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysatesAnalytical Biochemistry389, 83-85, (2009), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agaroseProteomics9, 4098- 4101 (2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Ujihara, and T. Koike

Separation and detection of large phosphoproteins using Phos-tag SDS-PAGENature Protocols4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tagRapid Communications in Mass Spectrometry24, 1075-1084 (2010), J. Morishige, M. Urikura, H. Takagi, K. Hirano, T. Koike, T. Tanaka, and K. Satouchi

Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexesClinical Biochemistry43, 302-306 (2010), E. Kinoshita, E. Kinoshita-Kikuta, H. Nakashima, and T. Koike

The DNA-binding activity of mouse DNA methyltransferase 1 is ragulated phosphorylation with casein kinase 1σ/εBiochemical Journal427, 489-497 (2010), Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita


产品列表
产品编号 产品名称 产品规格 产品等级 备注
308-93563 Phos-tag™ Agarose
 Phos-tag 琼脂糖
3 mL

Phos-tag™ 质谱分析试剂盒 Phos-tag™ Mass Analytical Kit

Phos-tag™ 质谱分析试剂盒
Phos-tag™ Mass Analytical Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ Mass Analytical KitPhos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit

用于 MALDI-TOF/MS检测,提高检测灵敏度!

  用于质谱分析的试剂套装。

  Phos-tag Mass Analytical Kit 是用于质谱分析的试剂套装,可配套 MALDI-TOF/MS 使用。可检测磷酸化分子- Phos-tag® 复合物,通常可提高低磷酸化分子的检测灵敏度。


试剂盒内容:

● Phos-tag™ MS-101L  5 mg([C27H29N6O64Zn2]3+ MW:581.4)

● Phos-tag™ MS-101H 5 mg([C27H29N6O68Zn2]3+ MW:589.4)

● Phos-tag™ MS-101N 10 mg([C27H29N6OZn2]3+ MW:584.3)

原理:


Phos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit


优点、特色:

● CH3COO- 等价结合在 Phos-tag™ MS-101 上。

● 在溶液中,不含有阴离子的 Phos-tag™ MS-101 带有+3价。

● 检测前需制备 1 mM 的 Phos-tag™ MS-101L,MS-101H 或者 MS-101N(溶于水)。

案例、应用:

【使用例子:检测 Phos-tag™ – 磷酸化 LPA 复合体】


Phos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit


由于正电荷增大磷酸化 LPA 检测灵敏度上升



Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™ 是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot 检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™ Agarose)及质谱分析 MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


Phos-tag™ 的基本结构:

Phos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit

特点:

与-2价磷酸根离子的亲和性和选择性高于其它阴离子

在 pH 5-8 的生理环境下生成稳定的复合物

原理:


Phos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit

相关应用:


Phos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit

相关产品:

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离:SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离:预制胶中含有 50 μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测:代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化:通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析:用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™ 由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:http://phos-tag.jp

Phos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit

Phos-tag 第6版说明书

Phos-tag™ 质谱分析试剂盒                              Phos-tag™ Mass Analytical Kit

Phos-tag系列 ver. 8

Q.     Phos-tag™ Mass 用于实验可以使用多少次?

A.     如果每次用量为 5 μL,至少可以使用 1000 次。

Q.     如何选择使用 Phos-tag™ MS-101L,Phos-tag™ MS-101H 和 Phos-tag™ MS-101N ?

A.     Phos-tag™ 101N 含有自然存在的 Zn,101L 与 101H 分别含有 Zn 的同位素 64Zn 和 68Zn。

     请参考以下建议:

     摸索条件时使用 101N,其中含有多种同位素,结果比较详细;

     鉴定磷酸基团是否存在,使用 101L 和 101H,这些试剂分别包含 64Zn 和 68Zn。使用这些试剂检测同一个样品时会产生不同的荷质比。

Q.     如果想测定经过 Phos-tag™ SDS-PAGE 分离得到的样品,是否必须要在凝胶消化之前去除 Phos-tag™?

A.     没有必要。SDS-PAGE 结束之后根据一般的凝胶消化方法进行操作即可。

Q.     能否用于 ESI 质谱?

A.     是的,可以使用。请参考下面的文献,这篇报道使用 Phos-tag™ MS-101N 进行 ESI-MS 分析。

      在实验过程中,使用了中性溶液,若为酸性溶液会导致 Phos-tag ™ 分离。

        【参考文献】 Anal. Chem. (2008), 80, 2531-2538 (MS-101N ESI-MS)

【参考文献】


·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.


References on Phos-tag™ Chemistry

  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

  • Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

  • Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

  •  Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

  • Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

  • Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture MoleculeAnalytical Chemistry77, 3979-3985 (2005), K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama

  • Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike

  • Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pHProteomics, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike

  • Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry360, 160-162 (2007), S. Yamada, H. Nakamura, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and Y. Shiro

  • Label-free kinase profiling using phosphate-affinity polyacrylamide gel electrophresisMolecular & Cellular Proteomics, 6, 356-366 (2007), E. Kinoshita-Kikuta, Y. Aoki, E. Kinoshita, and T. Koike

  • A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+.Phos-tag.)

  • Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag MoleculeJournal of Biomolecular Techniques18, 278-286 (2007), T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura

  • A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresisAnalytical Biochemistry378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate- affinity SDS-PAGEProteomics, 8, 2994-3003 (2008), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, S. Yamada, H. Nakamura, Y. Shiro, Y. Aoki, K. Okita, and T. Koike

  • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathwayNature Structural & Molecular Biology15, 1138-1146 (2008), M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge, and M. Takata

  • to Page top

  • Two-dimensional phosphate affinity gel electrophoresis for the analysis of phosphoprotein isotypes Electrophoresis30, 550-559 (2009), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, Y. Aoki, S. Ohie, Y. Mouri, and T. Koike

  • Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leavesBioscience, Biotechnology, and Biochemistry,73, 1293-300 (2009), T. Tanaka, G. Horiuchi, M. Matsuoka, K. Hirano, A. Tokumura, T. Koike, and K. Satouchi

  • A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptidesAnalytical Biochemistry388, 235-241, (2009), K. Takiyama, E. Kinoshita, E. Kinoshita-Kikuta, Y. Fujioka, Y. Kubo, and T. Koike

  • Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysatesAnalytical Biochemistry389, 83-85, (2009), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agaroseProteomics9, 4098- 4101 (2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Ujihara, and T. Koike

  • Separation and detection of large phosphoproteins using Phos-tag SDS-PAGENature Protocols4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

  • A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tagRapid Communications in Mass Spectrometry24, 1075-1084 (2010), J. Morishige, M. Urikura, H. Takagi, K. Hirano, T. Koike, T. Tanaka, and K. Satouchi

  • Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexesClinical Biochemistry43, 302-306 (2010), E. Kinoshita, E. Kinoshita-Kikuta, H. Nakashima, and T. Koike

  • The DNA-binding activity of mouse DNA methyltransferase 1 is ragulated phosphorylation with casein kinase 1σ/εBiochemical Journal427, 489-497 (2010), Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita


产品列表
产品编号 产品名称 产品规格 产品等级 备注
305-93551 Phos-tag™ Mass Analytical Kit 
Phos-tag 质谱分析试剂盒
1 kit

SuperSep Phos-tag™ 预制胶 SuperSep Phos-tag™

SuperSep Phos-tag™ 预制胶
SuperSep Phos-tag™

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

蛋白磷酸化研究的预制胶SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

SuperSep Phos-tag™

  SuperSep Phos-tag™ 是研究蛋白磷酸化的方法,无需特异性磷酸化抗体或者同位素标记。

SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

SuperSep Phos-tag™


  Phos-tag™ 是一种预制胶,预先加入了 50 μmol/L 的 Phostag™ Acrylamide,打开包装即可直接使用。预制胶中含有锌作为金属离子,在中心凝胶缓冲液中保存稳定性很好,得到的带条结果也很整齐。

  磷酸化蛋白和非磷酸化蛋白作为不同条带分离。

  分离后,胶可用于考马斯亮蓝染色,免疫印迹和质谱实验。

已公开的验证蛋白列表,请点击

Phos-tag™ SDS-PAGE 的原理


SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

在 HighWire Search 上搜索到的论文数


SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

运用

利用 p35 的丙氨酸突变体确定 Cdk5 激活 p35 的磷酸化位点


  p35 常见的磷酸化位点是 Ser8 和 Thr138。但是 Ser8 和 Thr138 位点往往会发生丙氨酸突变,产生3种突变体(Ser8 突变体:S8A,Thr138 突变体:T138A,Ser8 和 Thr138 双突变体:2A)。这3种突变体、野生型 p35、Cdk5 和没有激酶活性的 Cdk5 都来源于 COS-7 细胞。这些细胞裂解液用Phos-tag™ SDS-PAGE 和 Western blotting 进行检测(检测抗体:p35 抗体)。


SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

100 μM Phos-tag ™ 丙烯酰胺, 7.5% 聚丙烯酰胺凝胶

可明确磷酸化位点和条带迁移率的关系!


– 泳道1(条带 L2 和 L4)和泳道5(条带 M1):p35 在 Cdk5 的作用下发生了磷酸化;

– 泳道1(条带 L2 和 L4)和泳道3(条带 L2 和 L4):在无激酶活性 Cdk5 的作用下,大约有一半 p35 蛋白在 Thr138 位点发生磷酸化,同样在 138 位发生突变的 p35 蛋白亦是如此。

– 泳道5 (条带 M1)和泳道6(条带 L3 和 L4):Ser8 和 Thr138 是主要的磷酸化位点;

– 泳道5(条带 M1)、泳道7(条带L1和L2)和泳道8(条带M2):条带 M1 是 Ser8 和T hr138 都发生磷酸化的条带;

条带 M2 是只有 Ser8 磷酸化的条带;条带 L1 和 L2 是只有 Thr138 磷酸化的条带。

※ 条带 L1 和 L3 中的X是不确定哪个位点发生磷酸化的条带;

※ 条带L4是非磷酸化的 p35 。

【参考文献】

▪ Quantitative Measurement of in Vivo Phosphorylation States of Cdk5 Activator p35 by Phos-tag ™ SDS-PAGE. T. Hosokawa, T. Saito, A. Asada, K. Fukunaga, and S. Hisanaga,Mol. Cell. Proteomics, Jun 2010;9: 1133 – 1143.

【结果提供】

理化学研究所 脑科学综合研究中心 回路功能研究核心 记忆功能研究团队 细川智永(Dr. T. Hosokawa)

首都大学东京 理工学研究科 生命科学专业 神经分子功能研究室 久永真市(Dr. S. Hisanaga)

检测含有 Dnmt1 磷酸化激酶的片段

SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™


我们可以确定在片段中含有目的激酶!

① 采用亲和色谱法从鼠脑提取液中纯化 GST-Dnmt1(1-290)结合蛋白

② 使用 0.3 M 和 1 M NaCl 的 DNA 纤维素柱洗脱得到目的蛋白

③ GST-Dnmt1(1-290)作为体外激酶实验的反应底物

④ Phos-tag ™ SDS-PAGE 用于Western blotting,确定迁移条带中每个片段的激酶活性


【参考文献】

The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1delta/epsilon. Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita, Biochem. J., May 2010; 427(3): 489-97.

【结果提供】

高知大学 综合研究中心 生命、功能物质部门 实验实习机器设施 杉山康宪(Dr. Y. Sugiyama)

香川大学 农学部 应用生物科学科 动物功能生化学研究室 龟下勇(Dr. I. Kameshita)

二维电泳中的应用:分析 hnRNP K 磷酸化异构体

  小鼠巨噬细胞 J774.1 经 LPS 刺激后,裂解细胞,经过免疫沉淀法分离得到 hnRNP K。在二维电泳中,一维是 IPG 胶,二维是 Phos-tag ™ SDS-PAGE,可分离 hnRNP K 的异构体。利用质谱仪,可以确认不同的点代表不同的亚型或修饰蛋白。

SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

同一个等电点的位置上,不同位点发生磷酸化都可以被区分开来

(例: spots 6 vs. 8 and spots 4 vs. 7)

【参考文献】

▪ Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Y. Kimura, K. Nagata, N Suzuki, R. Yokoyama, Y. Yamanaka, H. Kitamura, H. Hirano, and O. Ohara, Proteomics, Nov 2010; 10(21): 3884-95.

【结果提供】

横滨市立大学 生命纳米系统科学研究科 生物体超分子系统科学专业 木村弥生(Dr. Y. Kimura)、平野久(Dr. H. Hirano)

理化学研究所 RCAI 小原收

备注

样品制备:

Phos-tag SDS-PAGE 对于蛋白样品中的杂质非常敏感,尤其是螯合剂,钒酸,无机盐,表面活性剂这类物质。

强烈建议在 Phos-tag SDS-PAGE 之前通过 TCA 沉淀或渗析法降低杂质含量。

转膜前处理:

另一个必须的步骤是在转膜前,用 EDTA 去除凝胶中的金属离子(Mn2+ 或者Zn2+);该步骤可提高蛋白的转膜效率。

● 分别准备 10 mmol/L 含 EDTA 和不含 EDTA 两种 1x transfer buffer。

● 将凝胶浸泡在含 10 mmol/L EDTA 的 1x transfer buffer,至少 20 分钟,温和摇晃。更换新缓冲液,重复3次。

● 将凝胶浸泡在不含 10 mmol/L EDTA 的 1x transfer buffer,10 分钟,温和摇晃。

● 转膜操作*。

* 建议用湿法转膜,以提高转膜效率。


SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

质量控制


  每一批 SuperSep Phos-tag™,出厂前均根据其产品规格进行测试,以保证可分离磷酸化和非磷酸化蛋白,以及他们的分离成都在正常参数内。

◆保存温度


2-10℃


◆产品信息


用于 Bio-Rad 伯乐电泳仪


货号

品名

电泳仪

规格

198-17981

SuperSep™ Phos-tag™ (50μmol/L), 7.5%, 17well,

83×100×3.9mm

Mini-PROTEAN® 

Tetra Cell

(Bio-Rad Laboratories, Inc.)

5 块

195-17991

SuperSep™ Phos-tag™ (50μmol/L), 12.5%, 17well,

83×100×3.9mm

5 块

用于 Life Technologies 电泳仪


货号

品名

电泳仪

规格

192-18001

SuperSep™ Phos-tag™ (50μmol/L), 7.5%, 17well,

100×100×6.6mm

XCell SureLock® 

Mini-Cell

(Life Technologies, Inc.)

5 块

199-18011

SuperSep™ Phos-tag™ (50μmol/L), 12.5%, 17well,

100×100×6.6mm

5 块

用于 Wako EasySeparator 电泳仪


产品编号 产品 凝胶浓度 孔数 包装
192-17401 SuperSep™ Phos-tag™ (50 μmol/L)
Phos-tag™ 预制胶50 μmol/L
6.0% 13孔 5块
199-17391 6.0% 17孔 5块
195-17371 7.5% 13孔 5块
192-17381 7.5% 17孔 5块
193-16711 10.0% 13孔 5块
190-16721 10.0% 17孔 5块
195-16391 12.5% 13孔 5块
193-16571 12.5% 17孔 5块
193-16691 15.0% 13孔 5块
196-16701 15.0% 17孔 5块
197-16851 17.5% 13孔 5块
194-16861 17.5% 17孔 5块

◆相关产品


产品编号 产品名称 规格
292-36411 EasySeparator
Phos-tag预制凝胶的配套电泳槽 
1 set

相关资料

SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

Phos-tag 第6版说明书

SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™

Phos-tag 系列产品 Ver.9

SuperSep Phos-tag™ 预制胶                              SuperSep Phos-tag™


【参考文献系列】Phos-tag™ SDS-PAGE

Q1.

我们可以采用哪种凝胶染色法?

A1.

所有的染色法都可使用,最常用的例如考马斯亮蓝染色法,负染,银染和荧光染色等。

Q2.

用考马斯亮蓝染法染色,着色不明显。

A2.

在微波炉内进行脱色,会取得比较满意的效果。

方法:将染色的胶放在 100 毫升去离子水里,用擦拭纸包裹胶,再放进微波炉加热几分钟后更换去离子水,并重复上述步骤34次。请注意防止盛放胶的容器温度过高。

Q3.

此款产品能否用于免疫印迹?

A3.

可以,如果用 EDTA 清除胶里面含有的锌,可以提高转膜的效率。

方法:胶浸在含有 10 mmol/L EDTA 的转移缓冲液(25 mmol/L tris、192   mmol/L甘氨酸,10%甲醇)轻轻搅拌 10 分钟。重复上述步骤3次。然后放进不含 EDTA 的转移缓冲液(25 mmol/L tris、192   mmol/L的甘氨酸,10%甲醇)里搅拌 10 分钟并转移到 PVDF 膜或 NC 膜(硝酸纤维素膜)上。

Q4.

条带扭曲了。

A4.

含有 EDTA,无机盐,表面活性剂等的样品可能会导致条带弯曲或者拖尾。通过 TCA 或透析沉淀脱盐样品。空白泳道也会导致相邻样品条带弯曲,在空白泳道加与样品相同体积的样品缓冲液(x1)

Q5.

磷酸化蛋白和非磷酸化蛋白不能分离。

A5.

将β酪蛋白(038-23221)作为 Phos-tag SDS-PAGE 电泳的阳性对照,将用碱性磷酸酶处理的β酪蛋白作为阴性对照,并检查条带的迁移。如果只有一个条带,可能是由于 Phos-tag™ 或丙烯酰胺的浓度没有优化导致磷酸化和非磷酸化蛋白不能分离。

Q6.

可用在细胞的粗提物上吗?

A6.

可以的,可能 Rf 值可能有稍低,由于目的蛋白的因素,条带可能会比较模糊。  

Q7.

上样量多少?

A7.

1至5微克纯化的蛋白(考马斯亮蓝染法),10 至 30 微克的组织或细胞提取物(取决于蛋白质的表达量)。

*这是推荐的用量,可以先进行常规的 SDS-PAGE 和免疫印迹法,确定合适的上样量。

Q8.

使用哪种蛋白marker?

A8.

不推荐使用蛋白 marker。该款产品不需要蛋白 marker。因此,建议用来源于大肠杆菌的重组蛋白或者是非磷酸化样品作为阴性对照代替蛋白 marker。

Q9.

此款产品的配离子是什么?

A9.

锌离子

Q10.

们怎么知道是因为蛋白发生磷酸化条带才会发生迁移?

A10.

使用 12.5% SuperSep™   Ace(Wako 目录 No. 199-14971)进行电泳(有相同的胶浓度),检查目标蛋白质是否降解。

参考文献


1. 

Apostolidis, S. A., Rauen, T., Hedrich, C. M., Tsokos, G. C., & Crispín, J. C. (2013). Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. Journal of Biological Chemistry, 288(37), 26775-26784.  全文

【IF=4.238】


2.

Baek, J. H., Gomez, I. G., Wada, Y., Roach, A., Mahad, D., & Duffield, J. S. (2018). Deletion of the Mitochondrial Complex-IV Cofactor Heme A: Farnesyltransferase Causes Focal Segmental Glomerulosclerosis and Interferon Response. The American journal of pathology, 188(12), 2745-2762. 全文

【IF:3.491预制胶浓度7.5%】


3. Bouvet, M., Dubois-Deruy, E., Alayi, T. D., Mulder, P., El Amranii, M., Beseme, O., … & Pinet, F. (2016). Increased level of phosphorylated desmin and its degradation products in heart failure. Biochemistry and biophysics reports, 6, 54-62. 全文

【预制胶浓度10%】


4. Boisvert, R. A., Schuttert, C. W., Shanahan, L. M., & Howlett, N. G. (2015). Characterization of a Putative Cyclin Dependent Kinase Phosphorylation Site Cluster in FANCD2. Further Insights Into the Regulation of the Fanconi Anemia FANCD2 Protein, 106-168. 全文

【预制胶浓度6%】


5. Chen, A. H., Lubkowicz, D., Yeong, V., Chang, R. L., & Silver, P. A. (2015). Transplantability of a circadian clock to a noncircadian organism. Science advances, 1(5), e1500358. 全文

【IF:13.116


6.

Chung, S., Kijima, K., Kudo, A., Fujisawa, Y., Harada, Y., Taira, A., … & Nakamura, Y. (2016). Preclinical evaluation of biomarkers associated with antitumor activity of MELK inhibitor. Oncotarget, 7(14), 18171. 全文

【IF:5.168(2016年),预制胶浓度12.5%】


7. Ciftci, H. I., Fujino, H., Koga, R., Yamamoto, M., Kawamura, S., Tateishi, H., … & Fujita, M. (2015). Mutational analysis of HIV-2 Vpx shows that proline residue 109 in the poly-proline motif regulates degradation of SAMHD1. FEBS letters, 589(13), 1505-1514. 全文

【IF:3.057预制胶浓度15%】


8. Dupré, E., Lesne, E., Guérin, J., Lensink, M. F., Verger, A., De Ruyck, J., … & Jacob-Dubuisson, F. (2015). Signal transduction by BvgS sensor kinase. Journal of Biological Chemistry, 290(38), 23307-23319. 全文

【IF:4.238预制胶浓度12.5%】


9. Edens, L. J., Dilsaver, M. R., & Levy, D. L. (2017). PKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells. Molecular biology of the cell, 28(10), 1389-1399. 全文

【IF:3.791预制胶浓度10%】


10. Ishibashi, T., Morita, S., Kishimoto, S., Uraki, S., Takeshima, K., Furukawa, Y., … & Nishi, M.(2020). Nicotinic acetylcholine receptor signaling regulates inositol-requiring enzyme 1a activation to protect β-cells against terminal unfolded protein response under irremediable endoplasmic reticulum stress. Journal of Diabetes Investigation, 11(4), 801-813 全文

【IF:3.761


11.

Jakobsen, T. H., Warming, A. N., Vejborg, R. M., Moscoso, J. A., Stegger, M., Lorenzen, F., … & Nielsen, T. E. (2017). A broad range quorum sensing inhibitor working through sRNA inhibition. Scientific reports, 7(1), 1-12. 全文

【IF:3.998预制胶浓度12.5%】


12. Kariya, Y., Kanno, M., Matsumoto-Morita, K., Konno, M., Yamaguchi, Y., & Hashimoto, Y. (2014). Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties. Biochemical Journal, 463(1), 93-102. 全文

【IF:4.097预制胶浓度7.5%】


13. Kawabata, N., & Matsuda, M. (2016). Cell density-dependent increase in tyrosine-monophosphorylated ERK2 in MDCK cells expressing active Ras or Raf. PloS one, 11(12), e0167940. 全文

【IF:2.74预制胶浓度5-20%】


14.

Kinoshita-Kikuta, E. , Kinoshita, E. , & Koike, T. . (2012). A laborsaving, timesaving, and more reliable strategy for separation of low-molecular-mass phosphoproteins in phos-tag affinity electrophoresis. International Journal of Chemistry, 4(5).

15. Kinoshita, E. , Kinoshita-Kikuta, E. , & Koike, T. . (2015). Advances in phos-tag-based methodologies for separation and detection of the phosphoproteome. Biochimica et Biophysica Acta (BBA) – Proteins & Proteomics, 1854(6), 601-608. 全文

【IF:2.371预制胶浓度12.5%】 


16. Maria Blaire, Bustamante, Annalisa, Ansaloni, Jeppe Falsig, & Pedersen, et al. (2015). Detection of huntingtin exon 1 phosphorylation by phos-tag SDS-PAGE: predominant phosphorylation on threonine 3 and regulation by ikkβ. Biochemical and biophysical research communications. 全文

【IF:2.985预制胶浓度12.5%】


17.

Najafov, A., Mookhtiar, A. K., Luu, H. S., Ordureau, A., Pan, H., Amin, P. P., … & Yuan, J. (2019). TAM kinases promote necroptosis by regulating oligomerization of MLKL. Molecular cell, 75(3), 457-468.

【IF:15.584


18.

Oku, Y., Nishiya, N., Shito, T., Yamamoto, R., Yamamoto, Y., Oyama, C., & Uehara, Y. (2015). Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS open bio, 5, 542-549. 全文

【IF:2.231


19. Oyama, M., Kariya, Y., Kariya, Y., Matsumoto, K., Kanno, M., Yamaguchi, Y., & Hashimoto, Y. (2018). Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin. Biochemical Journal, 475(9), 1583-1595. 全文

【IF:4.097预制胶浓度7.5%; 5-20%】


20.

Pan, L., Hildebrand, K., Stutz, C., Thomä, N., & Baumann, P. (2015). Minishelterins separate telomere length regulation and end protection in fission yeast. Genes & development, 29(11), 1164-1174. 全文

【IF:9.527预制胶浓度10%


21.

Tsukamoto, S., Kuratani, M., & Katagiri, T. (2020). Functional characterization of a unique mutant of ALK2, p. K400E, that is associated with a skeletal disorder, diffuse idiopathic skeletal hyperostosis. Bone, 115410. 全文

【IF:4.147预制胶浓度7.5%】


22. Sartagul, W., Zhou, X., Yamada, Y., Ma, N., Tanaka, K., Furuyashiki, T., & Ma, Y. (2014). The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress. PloS one, 9(11), e111936. 全文

【IF:2.74预制胶浓度10%】


23. Tavernier, Q., Bennana, E., Poindessous, V., Schaeffer, C., Rampoldi, L., Pietrancosta, N., & Pallet, N. (2018). Regulation of IRE1 RNase activity by the Ribonuclease inhibitor 1 (RNH1). Cell Cycle, 17(15), 1901-1916. 全文

【IF:3.699


24. Watanabe, A., Sasaki, T., Yukami, T., Kanki, H., Sakaguchi, M., Takemori, H., … & Mochizuki, H. (2016). Serine racemase inhibition induces nitric oxide-mediated neurovascular protection during cerebral ischemia. Neuroscience, 339, 139-149. 全文

【IF:3.056预制胶浓度12.5%】


25. Watanabe, T., Tsuruoka, M., Narita, Y., Katsuya, R., Goshima, F., Kimura, H., & Murata, T. (2015). The Epstein–Barr virus BRRF2 gene product is involved in viral progeny production. Virology, 484, 33-40. 全文

【IF:2.819预制胶浓度7.5%】


26.

Xing, F., Matsumiya, T., Hayakari, R., Yoshida, H., Kawaguchi, S., Takahashi, I., … & Imaizumi, T. (2016). Alteration of antiviral signalling by single nucleotide polymorphisms (SNPs) of mitochondrial antiviral signalling protein (MAVS). PloS one, 11(3), e0151173. 全文

【IF:2.74预制胶浓度10%】


27. Zhang, X., Hu, P., Ding, S. Y., Sun, T., Liu, L., Han, S., … & Wang, X. (2019). Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: an uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram. American journal of cancer research, 9(6), 1266-1281. 全文

【IF:5.177预制胶浓度7.5%


28. Zhao, D., Lu, X., Wang, G., Lan, Z., Liao, W., Li, J., … & Tang, M. (2017). Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature, 542(7642), 484-488. 全文

【IF:42.778


29. Funabara, D., Nishimura, Y., & Kanoh, S. (2019). Phosphorylation Properties of the N-Terminal Region of Twitchin from Molluscan Catch Muscle. American Journal of Molecular Biology, 9(3), 110-120. 概要

【预制胶浓度12.5%】


30.

都築政弘, 村田真理子, & 再生脳外科学. (2012). 新規染色法○ 董 偉傑・松野裕樹・亀山昭彦. 生物物理化学, 56, s90. 全文

【预制胶浓度12.5%


31. 脇本理恵子, 木下恵美子, 木下英司, & 小池透.(2014). P-1 SuperSep Phos-tagを用いた低分子量リン酸化タパク質の解析. 生物物理化学, Vol 58, 2, 98-108. 全文

【预制胶浓度12.5%】


32. Nogami, M., Ishikawa, M., Sano, O., Sone, T., Akiyama, T., Aoki, M., … & Okano, H. Identification of Hub Molecules of FUS-ALA by Bayesian Gene Regulatory Network Analysis of iPSC Model: iBRN. 概要

产品列表
产品编号 产品名称 产品规格 产品等级 备注
193-16711 SuperSep Phos-tag™  (50 μmol/L), 10%, 13 well 
Phos-tag 13孔10%预制胶
5块
190-16721 SuperSep Phos-tag™ (50 μmol/L), 10%, 17 well 
Phos-tag 17孔10%预制胶
5块
195-16391 SuperSep Phos-tag™ (50 μmol/L), 12.5%, 13 well 
Phos-tag 13孔12.5%预制胶
5块
193-16571 SuperSep Phos-tag™ (50 μmol/L), 12.5%, 17 well 
Phos-tag 17孔12.5%预制胶
5块
193-16691 SuperSep Phos-tag™ (50 μmol/L), 15%, 13 well 
Phos-tag 13孔15%预制胶
5块
196-16701 SuperSep Phos-tag™ (50 μmol/L), 15%, 17 well 
Phos-tag 17孔15%预制胶
5块
197-16851 SuperSep Phos-tag™ (50 μmol/L), 17.5%, 13 well 
Phos-tag 13孔17.5%预制胶
5块
194-16861 SuperSep Phos-tag™ (50 μmol/L), 17.5%, 17 well 
Phos-tag 17孔17.5%预制胶
5块

Phos-tag™ 生物素 Phos-tag™ Biotin

Phos-tag™ 生物素
Phos-tag™ Biotin

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ BiotinPhos-tag™ 生物素                              Phos-tag™ Biotin

无特异性磷酸化抗体时的理想选择!

  Phos-tag™ Biotin 是与生物素结合的 Phos-tag™,可用于免疫印迹法检测磷酸化蛋白。Phos-tag™ Biotin BTL-104 和 BTL-105 可灵敏检测 PVDF 膜上的磷酸化蛋白。


Phos-tag™ 生物素                              Phos-tag™ Biotin



优点、特色


  无辐射。

  无需 PVDF 膜的封闭处理。

  Phos-tag™ 的特异性结合与氨基酸种类、序列无关。

  可适用于免疫印迹和质谱分析等后续工作

   Phos-tag™ BTL 母液可稳定保存至少6个月。

  实验流程与使用 HRP 标记抗体相类似


※BTL-104、BTL-105、BTL-111 三者连接链(Linker)长度不一,但使用上基本相同。BTL-111 灵敏度更高。



案例、应用


【使用例:在 PVDF 膜上检测磷酸化蛋白】


Phos-tag™ 生物素                              Phos-tag™ Biotin


  转印在 PVDF 膜上的磷酸化蛋白可精确检测到 ng 级水平,没有检测到相应的去磷酸化蛋白与非磷酸化蛋白的信号斑点。

  免疫印迹检测磷酸化蛋白——Phos-tag ™ 生物素。

  摘自 Eiji Kinoshita ,et al., Mol.Cel.Proteomics (2006) 5: 749


【使用例:Phos-tag™ 生物素在检测蛋白激酶活性的微阵列(生物芯片)中的运用


  蛋白激酶是很多疾病诊断和药物筛选的靶标。近来有科研人员研发了一种检测胞内蛋白激酶活性的高灵敏度多肽微阵列。用微阵列点样机点样 2 nL 体积的底物多肽溶液,使多肽固定在戊二醛预修饰的高氨基末端载玻片。

  当多肽经细胞裂解液磷酸化后,用荧光标记的抗 phosphotyrosine(磷酸化酪氨酸)抗体检测酪氨酸激酶,或者用 Phos-tag™ 生物素,接着用荧光标记的亲和素检测丝氨酸或者苏氨酸激酶。之后用自动微阵列扫描仪检测荧光信号。多肽微阵列系统包括简单的多肽固定,只需少量样品,具有高密度阵列。重要的是,检测细胞裂解液蛋白激酶活性的灵敏度高。

  因此多肽微阵列系统可用于高通量筛选细胞内激酶活性,可用于药物筛选和疾病诊断。

Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™ 是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot 检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™Agarose)及质谱分析 MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


Phos-tag™ 的基本结构


Phos-tag™ 生物素                              Phos-tag™ Biotin

◆特点


与 -2 价磷酸根离子的亲和性和选择性高于其它阴离子

在 pH 5-8 的生理环境下生成稳定的复合物

原理


Phos-tag™ 生物素                              Phos-tag™ Biotin

相关应用


Phos-tag™ 生物素                              Phos-tag™ Biotin

相关产品

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离预制胶中含有50 μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析:用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:

Phos-tag™ 生物素                              Phos-tag™ Biotin


Phos-tag 第6版说明书


Phos-tag™ 生物素                              Phos-tag™ Biotin

Phos-tag 生物素操作手册

Phos-tag™ 生物素                              Phos-tag™ Biotin

说明书


Q: BTL-104 和 BTL-111 的区别?

A: BTL-104 的溶解度更高,BTL-111 的灵敏度更高。

 

Q: 检测灵敏度达到什么水平?

A: 可达到 ng 级别。需要使用化学发光试剂,比如 ImmunoStar LD(Wako)。

 

Q: 使用该产品还需要别的试剂或则耗材吗?

A: 硝酸锌(Zn(NO3)2)溶液和亲和素标记的 HRP((GE Healthcare Bio-Sciences: RPN1231)。制备 Phos-tag™ 生物素与亲和素标记的 HRP 

       偶联物时需要使用离心过滤装置(NMWL = 30,000, Nanosep™ 30K, Pall Life Sciences)。

 

Q: Phos-tag生物素使用的次数?

A: 主要决定于使用次数和使用量,以下实验次数仅作参考:

       BTL-104:130~1300次;

       BTL-111 1 mM 溶液:10~100次。

 

Q: 可测定磷酸化蛋白?

A: 根据条带的浓度,可进行半定量分析。

 

Q: 能够确定结合磷酸化基团的数目?

A: 不能。


Q: 能否剥除(strip)Phos-tag™生物素?

A: 可以。与含有 62.5 mM Tris-HCl(pH6.8),2%(w/v)SDS 和 0.1M 2-巯基乙醇溶液  混合后,震荡15分钟。用 1×TBS-T 洗涤3次,

       每次 10 分钟。

 

Q: 推荐使用哪种膜?

A: 建议使用 PVDF 膜。

 

Q: 使用 Phos-tag™ 生物素是否需要封闭?

A: 不需要。封闭会降低检测灵敏度。

【参考文献】


1.

"Phosphate-binding tag: A new tool to visualize phosphorylated proteins", E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike, Mol. Cell. Proteomics, 2006, 5, 749-757.


2.

"Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture Molecule", K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, Anal. Chem., 2006, 77, 3979-3985.

3.

"Phos-tagを用いたりん酸化タンパク質の検出法 ①ビオチン化Phos-tagを用いたケミルミ検出", 木下英司, 木下恵美子, 小池透, 実験医学, 2006, 24, 2523-2529.


4.

"Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag Molecule", T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura, J. Biomol. Tech., 2007, 18, 278-286.


5.

Wang, H. , Qi, C. , He, W. , Wang, M. , Jiang, W. , & Yin, H. , et al. (2018). A sensitive photoelectrochemical immunoassay of n(6)-methyladenosine based on dual-signal amplification strategy: ru doped in sio2 nanosphere and carboxylated g-c3n4. Biosensors & Bioelectronics, 99, 281.【用于m6A检测】


6.

Li B , Yin H , Zhou Y , et al. Photoelectrochemical detection of miRNA-319a in rice leaf responding to phytohormones treatment based on CuO-CuWO 4, and rolling circle amplification[J]. Sensors and Actuators B: Chemical, 2017:S0925400517316295.


7.

Emiko, K. K., Eiji, K., & Tohru, K. (2016). Phosphopeptide detection with biotin-labeled phos-tag. Methods in Molecular Biology, 1355, 17.


8.

Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: an uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram.Am J Cancer Res. 2019 Jun 1;9(6):1266-1281. eCollection 2019.


产品列表
产品编号 产品名称 产品规格 产品等级 备注
301-93531 Phos-tag™ Biotin BTL-104
 Phos-tag 生物素
10 mg
308-97201 Phos-tag™ Biotin BTL-111 1mM Aqueous Solution
 Phos-tag 生物素1mM水溶液
0.1 mL