LBIS® 安全性研究相关产品


LBIS® 安全性研究相关产品

LBIS® 安全性研究相关产品非临床研究用检测试剂

安全性研究领域


◆白蛋白(ELISA)


生产商编号

和光编号

产品名称

检测范围

检测样本量

AKRAL-121
634-04301

LBIS® Albumin Mouse ELISA Kit

小鼠白蛋白 ELISA试剂盒

50~1000 ng/mL

5 μL~

AKRAL-221
638-31931

LBIS® Mouse Albumin ELISA KIT

 (2plate type)

小鼠白蛋白ELISA试剂盒

(2孔板类型)

50~1000 ng/mL

5 μL~

AKRAL-120
631-04311

LBIS® Albumin 

Rat ELISA Kit

大鼠白蛋白 ELISA试剂盒

50~1000 ng/mL

5 μL~

AKRAL-220
631-31921

LBIS® Rat Albumin ELISA KIT 

(2plate type)

大鼠白蛋白ELISA试剂盒

(2孔板类型)

50~1000 ng/mL

5 μL~

 


白蛋白(TIA)


生产商编号

和光编号

产品名称

检测范围

检测样本量

备注

AKRAL-021S
638-25561

LBIS® Urinary Albumin-Mouse(S-type)

小鼠尿白蛋白检测试剂盒

(S型)TIA(含量)

6.17~500 μg/mL

6 μL
  (日立7180)

AKRAL-021SZ1
634-25563

LBIS® Mouse Urinary Albumin Assay Kit

LBIS® 小鼠尿白蛋白测定试剂盒

6.17~500 μg/mL

6 μL
  (日立7180)

按订单生产产品

AKRAL-020S
634-25301

LBIS® Urinary Albumin-Rat

(S-type)

大鼠尿白蛋白检测试剂盒

(S型)TIA(含量)

6.17~500 μg/mL

6 μL
  (日立7180)

AKRAK-020SZ1
630-25303

LBIS® Rat Urinary Albumin Assay Kit

LBIS® 大鼠尿白蛋白检测试剂盒

6.17~500 μg/mL

6 μL
  (日立7180)

按订单生产产品

AKRAL-022S
635-25831

LBIS® Urinary Albumin-Monkey(S-type)

猴尿白蛋白检测试剂盒

2.5~202.5 μg/mL

6 μL
  (日立7180)

ACMA-021
使用说明书

小鼠白蛋白管理血清(TIA用)

用AKRAL-021S/AKRAL-021SZ1检测时,可用本产品进行检测精度管理。融解后进行充分地搅拌,无需稀释直接调配浓度(切勿反复冻融)。随货附带一份记录浓度测定结果的说明书(参考左侧使用说明书)

浓度:

100~300 μg/mL
  批号不同,

浓度有所差异
  储存温度:-35℃以下
  有效期:12个月

容量:1 mL/瓶
  20瓶起售

按订单生产产品
  货期:1~1.5个月

ACRA-020
使用说明书

大鼠白蛋白管理血清(TIA用)

用AKRAL-020S/AKRAL-020SZ1检测时,可用本产品进行检测精度管理。融解后进行充分地搅拌,无需稀释直接调配浓度(切勿反复冻融)。随货附带一份记录浓度测定结果的说明书(参考左侧使用说明书)

浓度:

100~300 μg/mL
  批号不同,

浓度有所差异
  储存温度:-35℃以下
  有效期:12个月

容量:1 mL/瓶

 20瓶起售

按订单生产产品
  货期:1~1.5个月

 


◆下垂体内分泌


生产商编号

和光编号

产品名称

检测范围

检测

样本量

AKRGH-010
635-13741

LBIS® GH-Rat ELISA Kit

大鼠生长激素(GH) ELISA试剂盒

0.0313~2 ng/mL

5~25 μL

AKRLH-010S
636-23921

LBIS® Rat LH ELISA KIT(S type)

大鼠促黄体生成素(LH)

ELISA试剂盒(S型)

0.313~10 ng/mL

10~20 μL

AKRTS-010S2
639-31721

LBIS® TSH-Rat ELISA Kit(SⅡtype)

大鼠促甲状腺激素ELISA试剂盒

(SII型)

0.184~18.0 ng/mL

~20 μL

 


◆TDAR(T cell Dependent Antibody Responce)试验用


生产商编号

和光编号

产品名称

检测范围

检测样本量  

(稀释样本)

AKRKG-010
632-13751

LBIS® KLH(TDAR)-Rat IgG ELISA KIT

血蓝蛋白(KLH)(T细胞依赖性抗原)

大鼠免疫球蛋白G(IgG) ELISA试剂盒 (*1)

0.47~30 ng/mL

50 μL

AKRKM-010
639-13761

LBIS® KLH(TDAR)-Rat IgM ELISA KIT

血蓝蛋白(KLH)(T细胞依赖性抗原)

大鼠免疫球蛋白M(IgM) ELISA试剂盒 (*2)

3.13~200 ng/mL

50 μL

AKMOKG-014
637-30781

LBIS® KLH(TDAR)-Monkey   

IgG ELISA KIT   

血蓝蛋白(KLH)

(T细胞依赖性抗原)猴免疫球蛋白G(IgG) 

ELISA试剂盒 (*3)  

1.56~100 ng/mL

50 μL

AKMOKM-014
634-30791

LBIS® KLH(TDAR)-Monkey IgM ELISA KIT

血蓝蛋白(KLH)(T细胞依赖性抗原)

猴免疫球蛋白M(IgM) ELISA试剂盒 (*4)

15.6~1000 ng/mL

50 μL

ACMOKG

LBIS® i试剂盒用对照套装

(猴抗KLH-IgG抗体)

250 μL×2浓度,冷冻

ACMOKM

LBIS® 试剂盒用对照套装

(猴抗KLH-IgM抗体)

250 μL×2浓度,冷冻


(*1) 为了避免非特异性反应,请将检测样本稀释500倍以上

(*2) 为了避免非特异性反应,请将检测样本稀释200倍以上

(*3) 为了避免非特异性反应,请将检测样本稀释100倍以上

(*4) 为了避免非特异性反应,请将检测样本稀释100倍以上


LBIS® 肥胖与糖尿病动物ELISA试剂盒


LBIS® 肥胖与糖尿病动物ELISA试剂盒

LBIS® 肥胖与糖尿病动物ELISA试剂盒

◆品牌介绍

日本Shibayagi成立于1977年,最初是以柴山羊为实验动物,进行配种繁殖,制作应用于柴山羊的抗体为经营宗旨而成立的公司。现主要从事抗体和免疫试剂盒的生产,是日本著名的内分泌研究公司,提供肥胖、糖尿病、垂体激素、过敏及免疫相关因子免疫检测试剂,Apo B-48为其特有专利产品。从2016年1月起,被和光纯药株式会社(Wako)全面收购成为100%全资附属子公司。2017年FUJIFILM Group(以下称富士胶片集团)斥资全面收购和光纯药工业株式会社。翌年,与旗下富士胶片精细化工事业部(Fine Chemicals)合并,正式更改公司名称为:FUJIFILM Wako Pure Chemical Corporation(富士フイルム和光純薬株式会)

注:日本Shibayagi仍然保留自身品牌Logo:Shibayagi

 


◆LBIS® 糖尿病与肥胖动物模型用ELISA试剂盒

产品编号

产品名称

标准曲线范围

上样量
(稀释后的样品)

634-01481

LBIS®   Mouse Insulin ELISA Kit
LBIS® 小鼠胰岛素 ELISA试剂盒
标准检测范围类型。

0.156~10 ng/mL

10 μL

639-23911

LBIS® Mouse Insulin ELISA Kit(RTU)
LBIS® 小鼠胰岛素 ELISA试剂盒(RTU)
即用型,浓度6的标准品,标记抗体,

抗生物素蛋白溶液已稀释。缩减实验时间。

100~12,000 pg/mL

10 μL

630-10371

LBIS® Mouse Insulin ELISA Kit(H-type)

LBIS® 小鼠胰岛素 ELISA试剂盒(H型)

适合高浓度的样本检测,省略样本稀释步骤。

0.5~100 ng/mL

10 μL

633-03411

LBIS® Insulin-Mouse (U type)
LBIS® 小鼠胰岛素检测试剂盒(U型)
高灵敏度,请用于绝食等,低浓度的样本检测。

39~2500 pg/mL

5 μL

636-02781

LBIS® Insulin – Mouse (S type)
LBIS® 小鼠胰岛素检测试剂盒(S型)
抑制与共存的胰岛素原的交叉性,

特异性检测胰岛素

78~5000 pg/mL

5 μL

637-01471

LBIS® Rat Insulin ELISA Kit(T-type)

LBIS® 大鼠胰岛素 ELISA试剂盒(T型)

标准检测范围类型。

0.156~10 ng/mL

10 μL

636-24141

LBIS® Rat Insulin ELISA Kit(RTU)
LBIS® 大鼠胰岛素 ELISA试剂盒(RTU)
即用型,浓度6的标准品,标记抗体,

抗生物素蛋白溶液已稀释。缩减实验时间。

100~12,000 pg/mL

10 μL

633-10621

LBIS® Rat Insulin ELISA Kit(H-type)
LBIS® 大鼠胰岛素 ELISA试剂盒(H型)
适合高浓度的样本检测,省略样本稀释步骤。

0.5~100 ng/mL

10 μL

636-05581

LBIS® Insulin-Rat (U-E type)
LBIS® 大鼠胰岛素检测试剂盒(U-E型)
高灵敏度,请用于绝食等,低浓度的样本检测。

39~2500 pg/mL

10 μL

637-07191

LBIS® Insulin-Rat (S type)
LBIS® 大鼠胰岛素检测试剂(S型)
抑制与共存的胰岛素原的交叉性,

特异性检测胰岛素。

0.1~10 ng/mL

10 μL

633-01451

LBIS® Dog Insulin ELISA Kit
LBIS® 狗胰岛素 ELISA试剂盒
标准检测范围类型。

0.188~12 ng/mL

10 μL

634-02221

LBIS® Insulin-Monkey-T
LBIS® 胰岛素试剂盒(猴用T)
标准检测范围类型。

0.156~10 ng/mL

10 μL

630-01461

LBIS® Pig Insulin ELISA Kit
LBIS® 猪胰岛素 ELISA试剂盒
标准检测范围类型。

0.188~12 ng/mL

10 μL

637-07113

Insulin Standard Solution, Rabbit
胰岛素标准溶液,兔
另售的LBIS® ,需要大鼠胰岛素 ELISA试剂盒(T型)

635-13523

Bovine Insulin Standard solution
牛胰岛素标准溶液
另售的LBIS® ,需要大鼠胰岛素 ELISA试剂盒(T型)

630-07103

Hamster Insulin Standard solution
仓鼠胰岛素标准溶液
另售的LBIS® ,需要大鼠胰岛素 ELISA试剂盒(T型)


LBIS® 尿白蛋白检测试剂盒 自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒
自我免疫疾病 肾病研究

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

自我免疫疾病 肾病研究LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒

白蛋白检测用 ELISA Kit

■ LBIS® Albumin Mouse ELISA Kit

■ LBIS® Albumin Rat ELISA Kit

追加双板试剂盒

标准曲线范围:50~1,000 ng/mL

◆特点

● 短时间测定(总反应时间:2小时2分)

● 可微量样品测定(标准操作法为5μL)

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测试精度和告再现性

◆精度测试

● 组内变异(5次重复测定、3个样品): 平均 C.V. 值为 10% 以下

● 组间变异(3次重复测定、3个样品、3天): 平均 C.V. 值为 10% 以下

◆样品:血清或血浆、尿液

● 血浆采血推荐使用肝素

● 用本试剂盒配备的缓冲液稀释检体,稀释范围如下:


稀释倍数

血浆或血清检体:1万~5万倍

尿液检体:100 倍


8W

12W

16w

20w

24w

32w

40w

MRL/lpr,♂

8.9(5.3)

3.7(2.7)

30.1(5.7)

3,504(4,012)

2,100(3,990)

MRL/lpr,♀

2.5(0.6)

4.5(3.6)

2,055(3,244)

435(481)

436(616)

NZBWF1,♀

3.2(3.0)

4.6(2.0)

3.3(2.2)

3.1(1.8)

476(681)

3,471(4,288)

白蛋白检测试剂盒(免疫比浊法)

Turbidimetric Immuno Assay Kit (TIA Kit)

LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

■ LBIS® Albumin-Monkey(S-type)

■ LBIS® Albumin-Rat(S-type)

※ 图片为 LBIS® Albumin-Rat(S-type)

◆特点

● 测试范围

  猴子 2.5~202.5 μg/mL

  小鼠/大鼠 6.17~500 μg/mL

● 样品:尿液或血清

● 对猴子、小鼠、大鼠白蛋白各自使用专用抗体会分别产生特异反应。

● 使用普通的生化学自动分析装置,可短时间(10分钟)测定。

● 测试范围广,再现性高。

● 自定分析装置测试,不受手工操作影响。

● 为日本国内厂商的自动分析装置提供参数。(一部分除外)

◆精度测试(同时测试猴子用、小鼠用、大鼠用)

● 组内变异(5次重复检测、3个样品):平均 C.V. 值为 10% 以下

● 组间变异(3次重复检测、3个样品、4天):平均 C.V. 值为 10% 以下


相关资料


LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究 LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究 LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究
AKRAL020S说明书 ELISA试剂盒选择指南①② ELISA试剂盒选择指③④
LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究
AKRAL021S说明书 AKRAL120说明书 AKRAL121说明书

参考文献

◆Lbis® 小鼠白蛋白 ELISA试剂的相关参考文献


 1.

The proteasome inhibitor bortezomib attenuates renal fibrosis in mice via the suppression of TGF-β1. Zeniya M, Mori T, Yui N, Nomura N, Mandai S, Isobe K, Chiga M, Sohara E, Rai T, Uchida S. Sci Rep. 2017 Oct 12;7(1):13086.


 2.

A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. Yu Guan, Daisuke Nakano, Yifan Zhang, Lei Li, Wenhua Liu, Motohiro Nishida, Takashige Kuwabara, Asahiro Morishita, Hirofumi Hitomi, Kiyoshi Mori, Masashi Mukoyama, Tsutomu Masaki, Katsuya Hirano, Akira Nishiyama. Journal of Pharmacological Sciences, Available online 14, Sep 2017.


 3.

Rosuvastatin pretreatment suppresses distant organ injury following unilateral renal ischemia-reperfusion in hypertensive Dahl salt-sensitive rats. Kanno M, Nakayama M, Zhu WJ, Hayashi Y, Kazama JJ. Nephrology (Carlton). 2017 Sep 22.


 4.

Podocan Is Expressed in Blood and Adipose Tissue and Correlates Negatively With the Induction of Diabetic Nephropathy ? Yasunori Nio, Mitsugi Okawara, Shoki Okuda, Takanori Matsuo, Naoki Furuyama. Journal of the Endocrine Society, Vol.1, Issue 7, Jul 2017, Pages 772-786,


 5.

LXR, PPARγ, and PPARδ Agonists Are Not Sufficient to Demonstrate Therapeutic Potential against Mouse Model of Systemic Lupus Erythematosus. Toyota Tatebe N, Sunahori Watanabe K, Zeggar S, Hiramatsu S, Yan M, Katsuyama T, Katsuyama E, Watanabe H, Sada K, Wada J. Open Journal of Rheumatology and Autoimmune Diseases, 2017, 7, 128-136


 6.

Potent long-acting rhFGF21 analog for treatment of diabetic nephropathy in db/db and DIO mice. Zhao L, Wang H, Xie J, Chen Z, Li X, Niu J. BMC Biotechnol. 2017 Jul 4;17(1):58.


 7.

Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: A role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway. Maki T, Maeda Y, Sonoda N, Makimura H, Kimura S, Maeno S, Takayanagi R, Inoguchi T. Metabolism. 2017 Jun;71:33-45.


 8.

Dab1 Contributes to Angiotensin II-Induced Apoptosis via p38 Signaling Pathway in Podocytes. Gao Z, Chen X, Zhu K, Zeng P, Ding G. Biomed Res Int. 2017;2017:2484303.


 9.

Combination of cilostazol and probucol protected podocytes from lipopolysaccharide-induced injury by both anti-inflammatory and anti-oxidative mechanisms. He P, Kawamura H, Takemoto M, Maezawa Y, Ishikawa T, Ishibashi R, Sakamoto K, Shoji M, Hattori A, Yamaga M, Ide S, Ide K, Hayashi A, Tokuyama H, Kobayashi K, Yokote K. J Nephrol. 2016 Dec 22.


10.

Tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, suppresses renal damage in KKAy/Ta mice, obese and type 2 diabetic animals. Ishibashi Y, Matsui T, Yamagishi SI. Diab Vasc Dis Res. 2016 Jul 12.


11.

Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Wang Z, Hwang SH, Lee SY, Lim SS. Nutr Res Pract. 2016 Jun;10(3):282-7.


12.

Nuclear factor erythroid 2-related factor 2 is a critical target for the treatment of glucocorticoid-resistant lupus nephritis. Ebihara S, Tajima H, Ono M. Arthritis Res Ther. 2016 Jun 14;18(1):139.


13.

A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, Sakamoto K, Tsurutani Y, Ide S, Ide K, Kawamura H, Kobayashi K, Tokuyama H, Tryggvason K, Betsholtz C, Yokote K. Sci Rep. 2016 May 16;6:25955.


14.

Treatment with anti-IL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6-producing lung carcinoma cells. Noguchi-Sasaki M, Sasaki Y, Shimonaka Y, Mori K, Fujimoto-Ouchi K. BMC Cancer. 2016 Apr 11;16:270.


15.

Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice. Sugimoto M, Wakabayashi M, Shimizu Y, Yoshioka T, Higashino K, Numata Y, Okuda T, Zhao S, Sakai S, Igarashi Y, Kuge Y. PLoS One. 2016 Mar 24;11(3):e0152191.


16.

Chronic Administration of Visfatin Ameliorated Diabetic Nephropathy in Type 2 Diabetic Mice. Kang YS, Lee MH, Song HK, Kim JE, Ghee JY, Cha JJ, Lee JE, Kim HW, Han JY, Cha DR. Kidney Blood Press Res. 2016;41(3):311-24.


17.

Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Morita T, Nakano D, Kitada K, Morimoto S, Ichihara A, Hitomi H, Kobori H, Shiojima I, Nishiyama A. Eur J Pharmacol. Vol.756, p85-91, Jun 2015.


18.

Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Morita T, Nakano D, Kitada K, Morimoto S, Ichihara A, Hitomi H, Kobori H, Shiojima I, Nishiyama A. Eur J Pharmacol. Mar 2015.


19.

C-type natriuretic peptide attenuates lipopolysaccharide-induced acute lung injury in mice. Kimura T, Nojiri T, Hosoda H, Ishikane S, Shintani Y, Inoue M, Miyazato M, Okumura M, Kangawa K. J Surg Res. Vol.194(2), p631-7, Apr 2015.


20.

Myocardial infarction accelerates glomerular injury and microalbuminuria in diabetic rats via local hemodynamics and immunity. Dong Z, Gong K, Huang D, Zhu W, Sun W, Zhang Y, Xin P, Shen Y, Wu P, Li J, Lu Z, Zhang X, Wei M. Int J Cardiol.Vol.179, p397-408, Jan 2015.


21.

Effects of Toll-like receptor antagonist 4,5-dihydro-3-phenyl-5-isoxasole acetic acid on the progression of kidney disease in mice on a high-fat diet. Min HS., Kim JE., Lee MH., Song HK., Lee MJ., Lee JE., Kim HW., Cha JJ., Hyun YY., Han JY., Cha DR., Kang YS. Kidney Research and Clinical Practice, 2014.


22.

Ameliorates the Progression of Type 2 Diabetic Nephropathy by Exerting Antioxidative Effects. Ishizawa K., Izawa-Ishizawa Y., Yamano N., Urushihara M., Sakurada T., Imanishi M., Fujii S., Nuno A., Miyamoto L., Kihira Y., Ikeda Y., Kagami S., Kobori H., Tamaki T. PLOS one, 2014


23.

T olvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing the increases in kidney volume and renal injury. Aihara M., Fujiki H., Mizuguchi H., Hattori K., Ohmoto K., Ishikawa M., Nagano K. and Yamamura Y. JPET, Feb 2014.

24.

Local Mineralocorticoid Receptor Activation and the Role of Rac1 in Obesity-Related Diabetic Kidney Disease. Yoshida S., Ishizawa K., Ayuzawa N., Ueda K., Takeuchi M., Kawarazaki W., Fujita T., Nagase M.  Nephron Exp Nephrol, Vol.126, p16-24, 2014.


25.

Renin inhibition ameliorates renal damage through prominent suppression of both angiotensin I and II in human renin angiotensinogen transgenic mice with high salt loading. Yoshida S., Ishizawa K., Ayuzawa N., Ueda K., Takeuchi M., Kawarazaki W., Fujita T., Nagase M. Clinical and Experimental Nephrology, Oct 2013.


26.

Fibroblast Growth Factor 21 Improves Insulin Resistance and Ameliorates Renal Injury in db/db Mice. Kim HW., Lee JE., Cha JJ., Hyun YY., Kim JE., Lee MH., Song HK., Nam DH., Han JY., Han SY., Han KH., Kang YS. and Cha DR. Endocrinology, Vol.154(9), Sep 2013.


27.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty MF., Fujii M., Ikeda N., Kobayashi K., Sonoda N., Takayanagi R. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, R110-120, Jun 2013.


28.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty MF., Fujii M., Ikeda N., Kobayashi K., Sonoda N., Takayanagi R. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, R110-120, Jun 2013.


29.

Celastrol, an NF-κB Inhibitor, Improves Insulin Resistance and Attenuates Renal Injury in db/db Mice. J.E.Kim, M.H.Lee, D.H.Nam, H.K.Song, Y.S.Kang, J.E.Lee, H.W.Kim, J.J.Cha, Y.Y.Hyun, S.Y.Han, K.H.Han, J.Y.Han, D.R.Cha. PLOS one 2013.


30.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J, InoguchiT, SasakiS, MaedaY, McCarty M F, Fujii M, Ikeda N, Kobayashi K, Sonoda N and Takayanagi R. AJP – Regu Physiol,Vo.304(2),p110-120 Jan 2013.


31.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. J.Zheng, T.Inoguchi, S.Sasaki, Y.Maeda, M.F.McCarty, M.Fujii, N.Ikeda, K.Kobayashi, N.Sonoda, R.Takayanagi. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, Jan 2013.


32.

Add-On Aliskiren Elicits Stronger Renoprotection Than High-Dose Valsartan in Type 2 Diabetic KKAy Mice That Do Not Respond to Low-Dose Valsartan. Lei B, Nakano D, Fan Y-Y, Kitada K, Hitomi H, Kobori H, Mori H, Masaki T and Nishiyama A. J Pharmacol Sci,Vol.119(2), p131-138,Jun 2012.


33.

Aldosterone Does Not Contribute to Renal p21 Expression During the Development of Angiotensin II-Induced Hypertension in Mice. Nakano D, Lei B, Kitada K, Hitomi H, Kobori H, Mori H, Deguchi K, Masaki T, Minamino T and Nishiyama A. Am J Hypertens, Vol.25(3), p354-358, Mar 2012.


34.

Blockade of Cannabinoid Receptor 1 Improves Insulin Resistance, Lipid Metabolism, and Diabetic Nephropathy in db/db Mice. D. H. Nam., M. H. Lee., J. E. Kim., H. K. Song., Y. S. Kang., J. E. Lee., H. W. Kim., J. J. Cha., Y. Y. Hyun., S. H. Kim., S. Y. Han., K. H. Han, J. Y. Han and Dae Ryong Cha. Endocrinology, Vol.153, No.3, p1387-1396, Mar 2012.


35.

An Angiotensin II Type 1 Receptor Blocker Prevents Renal Injury via Inhibition of the Notch Pathway in Ins2 Akita Diabetic Mice. M. Koshizaka., M. Takemoto., S. Sato., H. Tokuyama., M. Fujimoto., E. Okabe., R. Ishibashi., T. Ishikawa., Y. Tsurutani., S. Onishi., M. Mezawa., P. He., S. Honjo., S. Ueda., Y. Saito and K. Yokote. Experimental Diabetes Research, Vol.2012.


36.

Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway. Hirasawa Y, Sakai T, Ito M, Yoshimura H, Feng Y, Nagamatsu T. European Journal of Pharmacology, Vol.672(1-3), p159-168, Dec 2011.


37.

Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. S. Sekiya., A. Suzuki. Nature 475,390-393(2011)


38.

Aliskiren improves insulin resistance and ameliorates diabetic vascular complications in db/db mice. Y. S. Kang., M. H. Lee., H. K. Song., Y. Y. Hyun., J. J. Cha., G. J. Ko., S. H. Kim., J. E. Lee., J. Y. Han. and D. R. Cha. Nephrol. Dial. Transplant. (2011) 26 (4): 1194-1204.


39.

Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. N. N.-Alvarez., A. S.-Gutierrez., Y. Chen., J. C.-Corbalan., W. Hassan., S. Kobayashi., Y. Kondo., M. Iwamuro., K. Yamamoto., E. Kondo., N. Tanaka., I. J. Fox., N. Kobayashi. Journal of Hepatology Vol. 52(2), p211-219, 2010.


40.

CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kang,Y.S.,Lee,M.H.,Song,H.K.,Ko,G.J.,Kwon,O.S.,Lim,T.K.,Kim,S.H.,Han,S.Y.,Hyun,K. Kidney International, Vol.78, p883-894, November(1), 2010


41.

Effect of interleukin-6 receptor blockage on renal injury in apolipoprotein E-deficient mice. Tomiyama-Hanayama M, Rakugi H, Kohara M, Mima T, Adachi Y, Ohishi M, Katsuya T, Hoshida Y, Aozasa K, Ogihara T and Nishimoto N. AJP – Renal Physiol, Vol.297(3), p679-684, Sep 2009.


42.

Elevated Urinary Cr Loss Induces a Reduction in Renal Cr Concentration and the Negative Cr Balance in Streptozotocin-Induced Diabetic Mice. MITA Y, ISHIHARA K, ISHIGURO M, TAKEDA M, HATTORI R, MURAKAMI K, YAMADA A, YASUMOTO K. Journal of Nutritional Science and Vitaminology,Vol. 54(4), p303-308, 2008.


43.

Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y and Fujita T. NTURE MEDFICINE, Vol.14(12), p1370-1376, Dec 2008.


44.

Rubratoxin B induces interleukin-6 secretion in mouse white Adipose tissues and 3T3-L1 adipocytes. Keiko Iwashita,Hitoshi Nagashima. Toxicology Letters, Vol.182, p79-83, 2008.


45.

Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells. Kato,H., Ishida,J., Nagano,K., Honjo,K., Sugaya,T., Takeda,N., Sugiyama,F., Yagami,K., Fujita,T., Nangaku,M., and Fukamizu, A. Lab Invest., Vol.88(7), p731-9, 2008.


46.

Differentiation of mouse and human embryonic stem cells into hepatic lineages. Shiraki,N., Umeda,K., Sakashita,N., Takeya,M., Kume,K., and Kume, S. Genes to Cells, Vol.13, p731-746, 2008.


47.

Effect of Lactobacillus jonsonii La1 on immune function and serum albumin in aged and malnourished aged mice. Kaburagi, T., Yamano, T., Fukushima, Y, Yoshino, H., Mito, N., and Sato, K. Nutrition Vol.24, p342-350, 2007.


48.

Differentiation of mouse embryonic stem cells to hepatocyto-like cells by co-culture with human liver nonparenchymal cell lines. Soto-Gutierrez, A., Navarro-Alvarez, N., Zhao, D., Rivas, J.D., Rivas-Carillo, J.D., Lebkowski, J., Tanaka, N., Fox, I.J., and Kobayashi, N. Nature Protocols. Electronic Edition Vol.2, p347-356, 2007.


49.

Construction and transplantation of an engineered hepatic tissue using a polyaminourethane-coated nonwoven polytetrafluoroethylene fabric. Soto-Gutierrez, A., Navarro-Alvarez, N., Rivas, J.D., Tanaka, K., Chen, Y., Misawa, H., Okitsu, T., Noguchi, H., Tanaka, N., and Kobayashi, N. Transplantation, Vol.83, p129-137, 2007.


50.

Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Fujii, M., Inoguchi, T., Maeda, Y., Sasaki, S., Sawada, F., saito, R., Kobayashi, K., Sumitomo, H., and Takayanagi, R. Kidney International, Vol.72, p473-480, 2007.


51.

Characterization of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Tsutsui, M., Ogawa, S., Inada, Y., Tomioka, E., Kamiyoshi, A., Tanaka, S., Kishida, S., Nishiyama, M., Murakami, M., Kuroda, J., Hashikura, Y., Miyagawa, S., satoh, F., shibata, N., and Tagawa, Y. Drug Metabolism and Disposition, Vol.34, p696-701, 2006.


52.

Growth factor midkine is involved in the pathogenesis of diabetic nephropathy. Kosugi, T., Yuzawa, Y., sato, W., Kawai, H., Matsuo, S.,Takei,Y.,Muramatsu,T., and Kadomatsu,K. Am J Pathology Vol.168, p9-19, 2006.


53.

Characterization of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Tsutsui,M., Ogawa,S., Inada,Y., Tomioka,E., Kammiyoshi,A., Tanaka,S., Kishida,T., Nishiyama,M., Murakami,M., Kuroda,J., Hashikura,Y., Miyagawa,S., Satoh,F., Shibata,N., and Tagawa,Y. The American Society for Pharmacology and Experimental Thera- peutics, Vol.34, p696-701,2006.


54.

Supplementation with chromium picolinate recovers renal Cr concentration and improves carbohydrate metabolism and renal function in type 2 diabetic mice. Mita, Y., Ishihara, K., Fukuchi, Y., Fukuya, Y., and Yasumoto, K. Biological Trace Element Research, Vol.105, p229-248, 2005.


55.

6-Methylsulfinylhexyl Isothiocyanate, an Antioxidant Derived from Wasabia japonica MATUM, Ameliorates Diabetic Nephropathy in Type 2 Diabetic Mice. FUKUCHI Y, KATO Y, OKUNISHI I, MATSUTANI Y, OSAWA T, NAITO M. Food Science and Technology Research, Vol.10(3), p290-295, 2004.


56.

Tissue array substratum composed of histological sections: A new platform for orienting differentiation of embryonic stem cells towards hepatic lineage. Takeuchi, T., Ochiya, T., and Takezawa, T. Tissue Eng Part A. 2008 Feb;14(2):267-74


◆Lbis® 大鼠白蛋白 ELISA试剂盒相关参考文献


 1.

Protective Role of PEDF-Derived Synthetic Peptide Against Experimental Diabetic Nephropathy. Ishibashi Y, Matsui T, Taira J, Higashimoto Y, Yamagishi S. Horm Metab Res. 2016 Sep;48(9):613-9.


 2.

A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats. Takeshige Y, Fujisawa Y, Rahman A, Kittikulsuth W, Nakano D, Mori H, Masaki T, Ohmori K, Kohno M, Ogata H, Nishiyama A. Hypertens Res. 2016 Jun;39(6):415-22.


 3.

Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Life Sci. 2016 Feb 15;147:125-31.


 4.

An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. Masanori Nozako, Takashi Koyama, Chifumi Nagano, Makoto Sato, Satoshi Matsumoto, Kiminobu Mitani, Reiko Yasufuku, Masayuki Kohashi, and Tomohiro Yoshikawa. PLoS One. 2015; 10(11): e0143979.


 5.

Oxygenated Static Preservation of Donation after Cardiac Death Liver Grafts Improves Hepatocyte Viability and Function.. Yu J, Murakami M, Aoki T, Jiang B, Jin Z, Koizumi T, Kusano M, Kamijo R, Miyamoto Y, Enami Y, Watanabe M, Otsuka K. Eur Surg Res. 2016;56(1-2):1-18.


 6.

Chronic Running Exercise Alleviates Early Progression of Nephropathy with Upregulation of Nitric Oxide Synthases and Suppression of Glycation in Zucker Diabetic Rats. Daisuke Ito, Pengyu Cao, Takaaki Kakihana, Emiko Sato, Chihiro Suda, Yoshikazu Muroya, Yoshiko Ogawa, Gaizun Hu, Tadashi Ishii, Osamu Ito, Masahiro Kohzuki, and Hideyasu Kiyomoto. PLoS One. 2015; 10(9): e0138037.


 7.

Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Life Sci. Volume 147, 15 February 2016, Pages 125–131


 8.

Automated image analysis of a glomerular injury marker desmin in SDT rats treated with losartan. Kakimoto T, Okada K, Hirohashi Y, Relator R, Kawai M, Iguchi T, Fujitaka K, Nishio M, Kato T, Fukunari A, Utsumi H. J Endocrinol, Vol.222(1), p43-51, Jul 2014.


 9.

Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Ito D., Ito O., Mori N., Cao P., Suda C., Muroya Y., Hao K., Shimokawa H., Kohzuki M. Clinical and Experimental Pharmacology and Physiology, Vol.40(9), p617-625, Sep 2013.


10.

Sulodexide improves renal function through reduction of vascular endothelial growth factor in type 2 diabetic rats. Cha JJ., Kang YS., Hyun YY., Han SY., Jee YH., Han KH., Han JY., Cha DR. Life Sciences, Vol.92(23), p1118-1124, Jun 2013.


11.

Aberrant Activation of the Intrarenal Renin-Angiotensin System in the Developing Kidneys of Type 2 Diabetic Rats. Fan YY., Kobori H., Nakano D., Hitomi H., Mori H., Masaki T., Sun YX., Zhi N., Zhang L., Huang W., Zhu B., Li P. and Nishiyama A. Horm Metab Res, Vol.45(5), p338-343, May 2013.


12.

Effects of exercise training on nitric oxide synthase in the kidney of spontaneously hypertensive rats. Ito D, Ito O, Cao P, Mori N, Suda C, Muroya Y, Takashima K, Ito S, Kohzuki M. Clinical and Experimental Pharmacology and Physiology, Vol.40(2), p74-82, Feb 2013.


13.

Renal Sympathetic Denervation Suppresses De Novo Podocyte Injury and Albuminuria in Rats With Aortic Regurgitation. Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nurun Nabi A H M, Suzuki F, Nagai Y, Nakano D, Hitomi H, Kitada K, Urushihara M, Kobori H, Kohno M, Nishiyama A. Circulation,Vol.125, p1402-1413,2012.


14.

GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, Yokomizo H, Hirata E, Sonoda N, Takayanagi R. Metabolism – Clinical and Experimental,Vol.61(10), p1422-1434, Oct 2012.


15.

N-type Calcium Channel Inhibition With Cilnidipine Elicits Glomerular Podocyte Protection Independent of Sympathetic Nerve Inhibition. Lei B,Nakano D, Fujisawa Y, Liu Y, Hitomi H, Kobori H, Mori H, Masaki T, Asanuma K, Tomino Y and Nishiyama A. J Pharmacol Sci, Vol.119(4), p359-367, Aug 2012.


16.

Beneficial effect of ubiquinol, the reduced form of coenzyme Q10, on cyclosporine nephrotoxicity. Ishikawa A, Homma Y. Int. braz j urol, Vol.38(2) 2012.


17.

Effect of Eplerenone, a Selective Aldosterone Blocker, on the Development of Diabetic Nephropathy in Type 2 Diabetic Rats . Ahn J H, Hong H C, Cho M J, Kim Y J, Choi H Y, Eun C R, Yang S J, Yoo H J, Kim H Y, Seo J A, Kim S G, Choi K M, Baik S H, Choi D S and Kim N H.  Diabetes Metab J, Vol36(2), p128-135, Apr 2012.


18.

P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. X. Ji., Y. Naito., G. Hirokawa., H. Weng., Y. Hiura., R. Takahashi and N. Iwai. Hypertension Research, 35, p173-179 (February 2012)


19.

The effects of iridium on the renal function of female Wistar rats. Iavicoli I, Fontana L, Marinaccio A, Alimonti A, Pino A, Bergamaschi A, Calabrese E J. Ecotoxicology and Environmental Safety, Vol.74(7), p1795-1799, Oct 2011.


20.

Effect of methylmercury administration on choroid plexus function in rats. M. Nakamura., A. Yasutake., M. Fujimura., N. Hachiya and M. Marumoto. Archives of Toxicology Vol. 85, (2011), p911-918,


21.

Renal preservation effect of ubiquinol, the reduced form of coenzyme Q10. A. Ishikawa., H. Kawarazaki., K. Ando., M. Fujita., T. Fujita and Y. Homma. Clinical and Experimental Nephrology Vol.15, Number 1 (2011), p30-33,


22.

Effects of mineralocorticoid receptor blockade on glucocorticoid-induced renal injury in adrenalectomized rats. K. Rafiq., D. Nakano., G. Ihara., H. Hitomi., Y. Fujisawa., N. Ohashi., H. Kobori., Y. Nagai., H. Kiyomoto., M. Kohno and A. Nishiyama. J Hypertens. 2011 February; 29(2): p290-298.


23.

Regression of superficial glomerular podocyte injury in type 2 diabetic rats with overt albuminuria: effect of angiotensin II blockade. Ihara G, Kiyomoto H, Kobori H, Nagai Y, Ohashi N, Hitomi H, Nakano D, Pelisch N, Hara T, Mori T, Ito S, Kohno M and Nishiyamad A. J Hypertens, Vol.28(11), p2289-2298, Nov 2010 .


24.

Visfatin is upregulated in type-2 diabetic rats and targets renal cells. Kang Y S, Song H K, Lee M H, Ko G J, Han J Y, Han S Y, Han K H, Kim H K and Cha D R. Kidney International, Vol.78, p170-181, 2010.


25.

High Salt Intake Elevated Blood Pressure but not Changed Circadian Blood Pressure Rhythm in Otsuka Long-Evans Tokushima Fatty (OLETF) Rat. Matsumoto M, Tsujino T, Naito Y, Sakoda T, Ohyanagi M, Nonaka H and Masuyama T. Clinical and Experimental Hypertension, Vol.31(3) , p271-280, 2009


26.

Cold Preservation of the Liver With Oxygenation by a Two-Layer Method. Odaira,M., Aoki,T., Miyamoto,Y., Yasuhara,R., Jin,Z., Yu,J., Nishino,N., Yamada,K., Kusano,T., Hayashi,K., Yasuda,D., Koizumi,T., Mitamura,K., Enami,Y., Niiya,T., Murai,N., Kato,H., Shimizu,Y., Kamijyo,R., and Kusano, M. Journal of Surgical Research, Volume 152(2), p209-217, 2009.


27.

Effect of Astaxanthin in Combination with α-Tocopherol or Ascorbic Acid against Oxidative Damage in Diabetic ODS Rats. NAKANO M, ONODERA A, SAITO E, TANABE M, YAJIMA K, TAKAHASHI J, CHUYEN N V. Journal of Nutritional Science and Vitaminology, Vol.54(4), p329-334, 2008.


28.

Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Ko G J, Kang Y S, Han S Y, Lee M H, Song H K, Han K H, Kim H K, Han J Y and Cha D R. Nephrol. Dial. Transplant, Vol23(9), p2750-2760, 2008.


29.

Strict angiotensin blockade prevents the augmentation of intrarenal angiotensin II and podocyte abnormalities in type 2 diabetic rats with microalbuminuria. Nishiyama A, Nakagawa T, Kobori H, Nagai Y, Okada N, Konishi Y, Morikawa T, Okumura M, Meda I, Kiyomoto H, Hosomi N, Mori T, Ito S and Imanishie M. J Hypertens, Vol.26(9), p1849-1859, Sep 2008.


30.

Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Lee M H, Song H K, Ko G J, Kang Y S, Han S Y, Han K H, Kim H K, Han J Y and Cha D R. Kidney International, Vo.l74, p890-900, 2008.


31.

Cell processing on polyimide surface patterned by rubbing. Matsumoto,N.,Hiruma,H.,Nagaoka,S.,Fujiyama,K.,Kaneko,A., and Kawakami, H.. Polymers for Advanced Technologies, Vol.19(8), p1002-1008, 2008.


32.

Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Fujii M, Inoguchi T, Maeda Y, Sasaki S, Sawada F, Saito R, Kobayashi K, Sumimoto H and Takayanagi R. Kidney International, Vol.72, p473-480, 2007.


33.

Antidiabetic effect of long-term supplementation with Siraitia grosvenori on the spontaneously diabetic Goto-Kakizaki rat. Suzuki, Y.A., Tomoda, M., Murata Y., Inui, H., Sugiura, M., and Nakano, Y. British J Nutrition, Vol.97, p770-775, 2007.


34.

Hepatocyte transplantation from steatotic liver in a rat model. Hayashi, K., Aoki, T., Jin, Z., Wang, H., Nishino, N., Kusano, T., Yasuda, D., Koizumi, T., Enami, Y., and Odaira, M. J Surgical Research, Vol.142, p104-112, 2007


35.

Dietary nitrite inhibits early glomerular injury in streptozotocin-induced diabetic nephropathy in rats. Ohtake, K., Ishiyama, Y., Uchida, H., Muraki, E., and Kobayashi, J. Nitric Oxide, Vol.17, p75-81, 2007.


36.

High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Sugano M, Yamato H, Hayashi T, Ochiai H, Kakuchi J, Goto S, Nishijima F, Iino N, Kazama J J, Takeuchi T, Mokuda O, Ishikawa T, Okazaki R. Nutrition, Metabolism and Cardiovascular Diseases, Vol.16(7), p477-484, Oct 2006.


37.

Spironolactone ameriolates renal injuary and connective tissue growth factor expression in type II diabetic rats. Han, K.H., Kang, Y.S., Han, S.Y., Jee, Y.H., Lee, M.H., Han, J.Y., Kim, H.K., Kim, Y.S., and Cha, D.R. Kidney International, Vol.70, p111-120, 2006.


38.

High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Ye, S.H., Watanabe, J., Takai, M., Iwasaki, Y., and Ishihara, K. Biomaterials, Vol.27, p1955-1962, 2006.


39.

Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Han,S.Y., Kim, C.H., Kim, H.S., Jee, Y.H., Song, H.K., Lee, M.H., Han, K.H., Kim, H.K., Kang, Y.S., Han, J.Y., Kim, Y.S. and Cha, D.R. J Am Soc Nephrology, Vol.17, p1362-1372, 2006.


40.

Efficient in vivo xenogeneic retroviral vector-mediated gene transduction into human Hepatocytes. Kentaro Emoto, Chise Tateno, Hiroshi Hino, Hironobu Amano, Yasuhiro Imaoka, Kinji Asahina, Toshimasa, Asahara, and Katsutoshi Yoshizato. Human Gene Therapy, Vol.16, p1168-1174, 2005.


41.

In vivo engineering of metabolically active hepatic tissue in a neovascularized subcutaneous cavity. Yokoyama, T., Ohashi, K., Kuge, H., Kanehiro, H., Iwata, H., Yamato, M., and Nakajima, Y. Am J Transplantation, Vol.6, p50-59, 2005.


42.

Effect of retinoic acid in experimental diabetic nephropathy. Han, S.Y., so, G.A., Jee, Y.H., Han, K.H., Kang, Y.S., Kim, H.K., Kang, S.W., Han, D.S., Han, J.Y., and Cha, D.R. Immunol Cell Biol, Vol.82, p568-576, 2004.


43.

Enhanced activity of serum and urinary hyaluronidases in streptozotocin-induced diabetic Wister and GK rats. Ikegami-Kawai, M., Okuda, R., Nemoto, T., Inada, N., and Takahashi, T. Glycobiology, Vol.14, p65-72, 2004.


产品列表
产品编号 产品名称 产品规格 产品等级 备注
638-04309 (AKRAL-121) LBIS® Mouse Albumin ELISA kit
LBIS® 小鼠白蛋白 ELISA试剂盒 
96 tests
638-31931 (AKRAL-221)LBIS® Mouse Albumin ELISA KIT (2plate type) 96 tests×2
635-04319 (AKRAL-120)LBIS® Rat Albumin ELISA kit
LBIS® 大鼠白蛋白 ELISA试剂盒 
96 tests
631-31921 (AKRAL-220)LBIS® Rat Albumin ELISA KIT (2plate type) 96 tests×2
638-25561 (AKRAL-021S)LBIS®  Albumin-Mouse(S-type)
LBIS®  小鼠尿白蛋白检测试剂盒(S型)TIA(含量) 
60 tests
634-25301 (AKRAL-020S) LBIS®  Albumin-Rat(S-type)
LBIS®  大鼠尿白蛋白检测试剂盒(S型)TIA(含量) 
60 tests

LBIS® 抗dsDNA-小鼠ELISA试剂盒 LBIS® Mouse Anti-dsDNA ELISA Kit

LBIS® 抗dsDNA-小鼠ELISA试剂盒
LBIS® Mouse Anti-dsDNA ELISA Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® 抗dsDNA-小鼠ELISA试剂盒LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit

LBIS® Mouse Anti-dsDNA ELISA Kit

 

  近年来研究人员多通过使用与人具有同样的自身免疫性疾病的实验动物自然发病和人为使实验动物发症的方式来研究自身免疫性疾病的机制阐明和新型药物开发。自然发病系统代表的MRL/lpr小鼠被应用到很多实验。MRL/lpr小鼠在淋巴结肿瘤发病同时伴随着肾炎、血管炎、关节炎的高机率发病,对包含慢性风湿性关节炎(RA)模型的自身免疫性疾病发病机制的阐明,可作为有效的模型进行研究。MRL/lpr小鼠血清中被检测出自身抗体有IgG型类风湿因子(RF)、IgM型类风湿因子(RF)、抗ssDNA 抗体、抗dsDNA 抗体、抗Sm 抗体。

  通过使用该疾病动物血清中自身抗体含量做标准曲线,通过单位转换,可进行测量之间数值的比较。

  LBIS® 抗dsDNA-小鼠ELISA试剂盒采用了测定小鼠抗dsDNA 抗体浓度的夹心酶联免疫测定法。

  此试剂盒仅限研究使用。

 


◆特点


● 全反应时间是4小时20分钟。

● 测定小鼠血清或者血浆(肝素血浆除外)中的抗dsDNA 抗体浓度。

● 可测定微量样本(标准操作法是5 μL)。

● 1个试剂盒可做96孔。

● 标准品是小鼠源。

● 全部试剂均为液体。



试剂盒的保存和使用期限


  试剂盒在2-8℃保存。此保存条件下,有效期(记载在外箱标签)内试剂盒是稳定的。开封的试剂对应保存状态可能会受到影响,请尽早使用。

◆测定原理


  本试剂盒是标准品、稀释样本在抗原包被的微孔板中进行孵育处理。孵育2小时后清洗,加入过氧化物酶结合抗小鼠IgG抗体,与捕捉的抗体孵育2小时。清洗后,显色剂(TMB)与孔中残留的过氧化物酶反应。添加酸性溶液可终止反应。反应生成的黄色产物在450 nm处(副波长620 nm)测定。吸光度与抗小鼠dsDNA 抗体浓度成正比。标准品浓度对应吸光度可制作成标准曲线。通过标准曲线获得未知样本浓度。



◆试剂盒组成


组成

状态

包装

(A)抗原包被96孔板

直接使用

96 wells((8×12)/个)

(B)标准抗小鼠dsDNA 抗体溶液(10000 mU/mL)※

浓缩液

100 μL/瓶

(C)缓冲液

直接使用

60 mL/瓶

(D)标记抗体

(过氧化物酶结合抗小鼠IgG抗体)

浓缩液

20 μL/瓶

(E)显色液(TMB)

直接使用

12 mL/瓶

(F)终止液(1M H2SO4)※注意操作

直接使用

12 mL/瓶

(G)浓缩清洗液(10×)

浓缩液

100 mL/瓶

盖板

1 个

操作说明书

1 本

※根据批次不同,数值有差异。

 


◆所需必要设备


● 蒸馏水。

● 标准溶液稀释用试管。

● 清洗液(稀释用溶液)用玻璃器具。(量筒·瓶)

● 枪头交换式移液器。(一次性枪头5 μL正规的移液枪,以及50-450 μL正规的移液枪)

● 连续分装移液枪。(例:Eppendorf 的multipette plus、可进行100 μL连续分装的仪器。)

● 纸巾等吸水性物品。(清洗后去除板上残留液体)

● 搅拌器。(Vortex类型)

● 96孔板用振荡器。(约800 rpm)

● 96孔板用清洗机(若有是最好)或者注射瓶。

● 96孔板酶标仪。(450 ±10 nm 、620 nm:600~650 nm)

● 数据分析用软件。(若有是最好)

 


◆试剂盒性能


● 测定范围

● 小鼠抗dsDNA 抗体检测范围在15.6-1000 mU/mL内。

● 特异性

● 本ELISA系统使用的标识抗体对抗小鼠IgG抗体具有特异性。

● 与小鼠IgM的反应交差性在检测灵敏度以下。

● 精密度实验

● ①批次变动(N=30)平均C.V.值是4.2%

● ②日差可重复性实验(N=30、3天)平均C.V.值是4.7%



欲了解更多相关产品信息,请点击文字:LBIS® 疾病相关动物模型ELISA试剂盒系列

相关资料


LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit

LabAssay·shibayagi·NK细胞

◆注意事项 

● 本试剂盒需要由掌握ELISA 法技术的人员,或者是在技术人员指导下使用。

● 手动操作测定时请使用对可重复性较稳定的移液器。

● 准备工作以及本试剂盒操作中,请穿戴手套,眼镜,保护服。

 试剂类请不要接触皮肤。误将本试剂盒的试剂接触眼睛、口腔、伤口、皮肤等情况请立即进行应急处理,如用 ● 自来水彻底冲洗,必要时请就医。

● 使用本试剂盒的空间请不要进食和吸烟。

● 本试剂盒含有动物源成分。与测定样本一样可能会有感染的危险性,操作需要注意。

● 请不要使用加热灭活样本。

● 抗凝剂请使用除肝素以外试剂。

● 试剂类请勿入口。

● 批次号不同的产品请不要混合使用。

● 各步骤静置反应时,为防止板孔干燥、异物混入、分装试剂蒸发。请必须盖上盖板。

● ELISA法会受到测定环境影响的。测定操作、静置反应的室温严格控制在:20~25℃(实验台上或者是恒温箱 ● 内温度)。另外,避免在风速(也包括空调风)0.4 m/sec*以上,湿度不足30%的环境下测定。

   *若想获取相关标准的内容请联系我们。

 

◆技术提示


● 请注意样本和试剂中不要混入不纯物。建议使用1孔/1枪头。

● 显色剂在96孔板使用前是无色或者透明的。请避光保存。

● 终止液在96孔板使用前是无色的。将终止液加入到孔中,颜色立即从蓝色变成黄色。

● 不得已在风速:0.4 m/sec以上,湿度不满30%的操作环境下测定时,各步骤的静置反应均需要盖上盖板,请 ●   采取增加各孔的密闭度措施。

例:用封口膜覆盖板孔,在其上面覆盖盖板,或者在恒温箱内,泡沫塑料箱内静置反应等。要根据测定环境的条件制定出不同的对策方法。具体详细ELISA技术信息请联系我们。

● 使用完的样本,使用的消耗品等请用1%福尔马林、2%戊二醛或者0.1%以上的次氯酸钠溶液浸泡1小时。或者 ● 高压灭菌处理后废弃。另外,使用的消耗品和未使用的药品请按照规定以及法律和它所属的设施各区域的规章丢● 弃。

◆试剂配制

● 试剂盒的试剂使用前必须恢复到室温(20-25℃)

● 请按照测定所需用量制备试剂。

● 请不要使用超过有效期(外箱记载)的试剂。


室温直接使用的试剂

[抗原包被96孔板]

稳定性和保存方法

  未使用(在冷藏状态下请不要撕开密封膜)抗原包被袋是同捆的拉链密封袋,请在2-8℃保存。有效期内可稳定保存。

[缓冲液]和[显色液]

稳定性和保存方法

  使用部分溶液时将适量液体移至其他容器,其余请不要恢复室温,直接拧紧盖子,置于2-8℃保存。有效期内保持稳定。

[终止液(1M H2SO4)]※注意操作

稳定性和保存方法

  将剩余终止液瓶盖拧紧,置于2-8℃保存。有效期内保持稳定。


浓缩试剂类

[浓缩清洗液(10×)]

  浓缩清洗液(10×)用室温的蒸馏水10倍稀释,制备成实用稀释倍数1×溶液。

  例:100 mL的浓缩清洗液(10×)+900 mL蒸馏水(96孔板全部使用情况下)

稳定性和保存方法

  浓缩清洗液(10×)保存时要拧紧瓶盖,置于2-8℃保存。有效期内保持稳定。使用残留的稀释液请废弃。

[标准抗小鼠dsDNA 抗体溶液(10000 mU/mL)];抗体标准曲线制作用

  使用标准抗小鼠dsDNA 抗体溶液(10000 mU/mL)(原液)按下表(例)制成标准溶液。


标准溶液容量

缓冲液

浓度(mU/mL)

原液50 μL

450 μL

1000

1000 mU/mL溶液250 μL

250 μL

500

500 mU/mL溶液250 μL

250 μL

250

250 mU/mL溶液250 μL

250 μL

125

125 mU/mL溶液250 μL

250 μL

62.5

62.5 mU/mL溶液250 μL

250 μL

31.3

31.3 mU/mL溶液250 μL

250 μL

15.6

0(空白)

250 μL

0


稳定性和保存方法

  拆分试剂盒使用前从冷藏柜取出稀释制备,剩余原液不要置于室温,将瓶盖拧紧后,置于2-8℃保存。有效期内保持稳定。稀释的标准溶液直接使用,请不要保存。

[标记抗体(过氧化物酶结合抗小鼠IgG抗体)]

  提供充分使用量20 μL。

  请将浓缩液用缓冲液稀释2000倍(推荐分2步稀释)

稳定性和保存方法

  拆分试剂盒使用前从冷藏柜取出稀释制备,剩余原液不要置于室温,将瓶盖拧紧后,置于2-8℃保存。有效期内保持稳定。剩余稀释液请废弃。

 

◆样本的制备

  本试剂盒可测定小鼠血清或者血浆中抗小鼠dsDNA 抗体浓度。样本请按照常规方法采集的血清或者血浆。除肝素以外的抗凝剂均可使用。请不要使用加热灭活样本。根据测定范围(15.6-1000 mU/mL),利用试剂盒的缓冲液稀释样本。稀释倍数为51倍,101倍,201倍。稀释样本时,预先在试管等容器用缓冲液稀释,然后分装至检测孔中。若怀疑是有干扰物质影响的标本,在同一样本情况下,请稀释100倍以上方可测定。另外,请用不同2个点以上的稀释率确定稀释直线性。浑浊以及含有难溶物的样本需要离心分离除去后方可测定。另外,请不要使用溶血样本和高脂质样本。

稳定性和保存方法

  样本采集后立即测定,需要一周内测定时,请保存在2-8℃条件下。另外,长时间保存情况下需要-35℃以下冻存管保存。测定前解冻样本需要充分搅拌,避免反复冻融。此为造成得不到正确结果的原因。

 

◆测定操作方法

[抗原包被微孔板的密封是,微孔板充分恢复到室温后方可除去。]

1.用预先制备清洗液对每孔加满清洗3遍。然后将板倒扣在纸巾上,轻轻叩击孔板除去残留液体。

2.准(抗体)溶液或者稀释样本溶液,每孔分装100 μL。

3.于微孔板振荡器充分搅拌**。

4.覆盖板盖,室温下静置2小时。

5.反应终止后,除去反应液,用清洗液对每孔加满清洗3遍。然后将板倒扣在纸巾上,轻轻叩击除去残留液体。

6.各板孔中分装标识抗体(过氧化物酶结合抗小鼠IgG抗体)100 μL,置于微孔板振荡器充分搅拌**。

7.覆盖板盖,室温下(20~25℃)静置2小时。

8.反应终止后,除去反应液,用清洗液对每孔清洗3遍*。然后将板倒扣在纸巾上,轻轻叩击除去残留液体。

9.向各孔分装显色液100 μL。置于微孔板振荡器充分搅拌**。

10.覆盖板盖,室温下(20~25℃)静置20分钟。

11.向各板分装终止液100 μL。终止显色反应。

12.将搅拌**后微孔板在分光光度计450 nm处(副波长620 nm)测定吸光度。

13.副波长是600-650 nm范围内使用。


注意

*清洗液的液量值是300 μL/孔。

使用平板清洗器的压力值:5-25 mL/分(取决于喷嘴的直径)

请注意清洗液倒出后的干燥情况。

**搅拌标准:800 rpm-10秒*3次


图1 工作表(例)

1&2列

3&4列

5&6列

7&8列

9&10列

11&12列

A

100 mU/mL

阳性对照

样本8

样本16

样本24

样本32

B

500 mU/mL

样本1

样本9

样本17

样本25

样本33

C

250 mU/mL

样本2

样本10

样本18

样本26

样本34

D

125 mU/mL

样本3

样本11

样本19

样本27

样本35

E

62.5 mU/mL

样本4

样本12

样本20

样本28

样本36

F

31.3 mU/mL

样本5

样本13

样本21

样本29

样本37

G

15.6

样本6

样本14

样本22

样本30

样本38

H

0

样本7

样本15

样本23

样本31

样本39

 

◆计算

1.制作抗体标准曲线。使用半对数X轴(Log)表示抗体浓度(mU/mL),Y轴表示吸光度的抗体标准曲线。

2.通过抗体标准曲线,获得稀释样本的吸光度对应的抗体浓度(mU/mL),抗体浓度乘以稀释倍数即为测定值。

*样本的吸光度在标准曲线吸光度以外的情况,用缓冲液进行适当地稀释后再次检测。

*吸光度在标准溶液最高浓度附近的样本需要用缓冲液进行适当地稀释后再次检测。

*计算机软件演算处理推荐使用3阶多项式,或4个参数。

*本试剂盒的测定值为小鼠样本的抗dsDNA 抗体浓度较方便确定的数值,这是使用本公司同一款试剂盒,以及使用其他设备的检测的数据进行比较的数值。小鼠的临床表现是由临床症状和其他的检测结果等进行综合判断。

抗体浓度标准曲线例子。(吸光度会根据测定环境而变化)

LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit


*所用酶标仪为SUNRISE RAINBOW(TECAN)

◆测定操作概述

*必须详细阅读操作说明书后再进行检测操作。

● 孔板、试剂类完全恢复到室温。

● 浓缩清洗液的稀释:用室温的蒸馏水稀释10倍。

● 标准溶液的稀释(例):用室温的缓冲液稀释。

LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit

 

● 阳性对照样本的制作,样本的制作。注:*最高浓度的标准溶液

抗原包被96孔板

↓洗净3次*

稀释样本或标准(抗体)溶液

100 μL

↓搅拌**,室温反应2小时(静置***)

↓清洗3次*

标记抗体(过氧化物结合抗小鼠IgG抗体)

的稀释用室温缓冲液,稀释2000倍

↓清洗3次*

标记抗体(过氧化物酶结合抗小鼠IgG抗体)

100 μL

↓搅拌**,室温反应2小时(静置***)

↓洗净3次*

显色液(TMB)

100 μL

↓搅拌**,室温反应2小时(静置***)

终止液(1M H2SO4)※注意操作

100 μL

↓搅拌**

吸光度测定(主波长450 nm,副波长620 nm)

室温:20~25℃

 

*平板清洗机或者用移液枪添加清洗液时的液量值:300 μL/孔

*平板清洗机压力值:5-25 mL/分(取决于喷嘴的直径)

*请注意清洗液倒出后的干燥情况。

**搅拌标准:800 rpm-10秒*3次

**副波长请设定范围为600-650 nm。

***搅拌完毕后在96孔板上覆盖盖板后静置处理。


Q&A 


● 全部孔的反应很弱

可能原因

⑴ 未加入标准品和样本。

⑵ 未加入显色相关试剂溶液

⑶ 弄错显色相关试剂溶液或未稀释制备。

⑷ 混入酶抑制剂。

⑸ 试剂盒保存温度的影响(冻存情况)

⑹ 微孔板清洗过度。

⑺ 显色液温度过低。


● 空白OD值比最小标准溶液浓度(15.6 mU/mL)的OD值高。

可能原因

清洗不当,清洗不完全。

(过氧化物酶结合抗体反应后清洗次数按照同样流速增加到4-6次。)


● 变动系数(CV)大

可能原因

①    清洗不当,清洗不完全。

②    准品和管理血清或者样本搅拌不充分。(请充分搅拌冻存样本)

③    移液器操作不一致。


Q1:试剂盒拆分之后能使用吗?

A1:可以。请使用切割工具将贴在平板的透明密封条带切割分开。不用的平板需要密封后保存在冷藏柜中。

Q2:要是取出平板时孔中有液体,究竟是什么?

A2:出货时填充的保存稳定液。

[1]

Original reports 

Parasites alter the pathological phenotype of lupus nephritis

Miyake. K.., Adachi. K.., Watanabe. M., Sasatomi. Y., Ogahara. S., Abe. Y., Ito. K., Dan Justin. YK., Saito. T., Nakashima. H. and Hamano. S.

Autoimmunity, 24:1-10, Jun. 2014.

[2]

Reactivity of autoantibodies against not only erythrocytes but also hepatocytes in sera   of mice with malaria

Kanda. Y., Kawamura. T., Kobayashi. T., Kawamura. H., Watanabe. H., Abo. T.

Cellular Immunology, Vol.289(1-2), p162-166, May-Jun 2014.

[3]

Epicutaneous Application of Toll-like Receptor 7 Agonists Leads to Systemic Autoimmunity in Wild-Type Mice: A New Model of Systemic Lupus Erythematosus

Yokogawa. M.,Takaishi. M., Nakajima. K., Kamijima. R., Fujimoto. C., Kataoka. S., Terada. Y. and Sano. S.

Arthritis & Rheumatology, Vol.66(3), p694-706, Mar. 2014.

[4]

Deficient Leptin Signaling Ameliorates Systemic Lupus Erythematosus Lesions in MRL/Mp-Faslpr Mice

Fujita. Y., Fujii. T., Mimori. T., Sato. T., Nakamura. T., Iwao. H., Nakajima A., Miki. M., Sakai. T., Kawanami. T., Tanaka. M., Masaki. Y., Fukushima. T., Okazaki. T. and Umehara. H.

The Journal of Immunology, Vol.192(3), p979-984, Feb. 2014.

[5]

Autoimmune disorder phenotypes in Hvcn1-deficient mice

Sasaki. M., Tojo. A., Okochi. Y., Miyawaki. N., Kamimura. D., Yamaguchi. A., Murakami. M., and Okamura. Y.

Biochem. J. Vol.450(2), p295-301, Mar. 2013.

[6]

Overexpression of Epstein-Barr virus-induced gene 3 protein (EBI3) in MRL/lpr mice suppresses their lupus nephritis by activating regulatory T cells

Nishimura Shinsuke and Inoue Hiroshi.

Autoimmunity, 2013.

[7]

Suppression of glomerulonephritis in lupus prone NZB/W mice by RN486, a selective inhibitor of Bruton's Tyrosine Kinase

P.Mina-Osorio, J.LaStant, N.Keirstead, T.Whittard, J.Ayala, S.Stefanova, R. Garrido, N. Dimaano, H. Hilton, M. Giron, K.-Y.Lau, J.Hang, J.Postelnek,Y.Kim, S.Min, A. Patel, J.Woods, M.Ramanujam, J.DeMartino, S.Narula, D.Xu.

Arthritis & Rheumatism, 2013.

[8]

Galectin-9 Ameliorates Clinical Severity of MRL/lpr Lupus-Prone Mice by Inducing Plasma Cell Apoptosis Independently of Tim-3

M.Moritoki, T.Kadowaki, T.Niki, D.Nakano, G.Soma, H.Mori, H.Kobara, T.Masaki, M.Kohno,   M.Hirashima.

PLOS one, 2013.

[9]

Runx1 Deficiency in CD4+ T Cells Causes Fatal Autoimmune Inflammatory Lung Disease Due to Spontaneous Hyperactivation of Cells 

W.F.Wong, K.Kohu, A.Nakamura, M.Ebina, T.Kikuchi, R.Tazawa, K.Tanaka, S.Kon, T.Funaki,   A.Sugahara-Tobinai, C.Y.Looi, S.Endo, R.Funayama,M.Kurokawa, S.Habu, N.Ishii, M.Fukumoto, K.Nakata, T.Takai and M.Satake

The Journal of Immunology, Vol.188(11), p5408-5420, Jun 2012.

[10]

Dendritic Cell-Specific Ablation of the Protein Tyrosine Phosphatase Shp1 Promotes Th1 Cell Differentiation and Induces Autoimmunity

T.Kaneko, Y.Saito, T.Kotani, H.Okazawa, H.Iwamura, M.Sato-Hashimoto, Y.Kanazawa, S.Takahashi, K.Hiromura, S.Kusakari, Y.Kaneko, Y.Murata,H.Ohnishi, Y. Nojima,   K.Takagishi and T. Matozaki

The Journal of Immunology, Vol.188(11), p5397-5407, Jun 2012.

[11]

Autoimmune disorder phenotypes in Hvcn1-deficient mice

Sasaki M, Tojo A, Okochi Y, Miyawaki N, Kamimura D, Yamaguchi A, Murakami M and Okamura Y.

Biochem. J. Vol.450, p295-301, 2013.

[12]

Eradication of Metastatic Renal Cell Carcinoma after Adenovirus-Encoded TNF-Related Apoptosis-Inducing Ligand (TRAIL)/CpG Immunotherapy

L.   A. Norian., T. P. Kresowik., H. M. Rosevear., B. R. James., T. R. Rosean., A. J. Lightfoot., T. A. Kucaba., C. Schwarz., C. J. Weydert., M. D. Henry., T. S. Griffith.

PLos One 7(2):e31085. 2012

[13]

Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation

E.W. Choi., Il S. Shin., S. Y. Park., J. H. Park., J. S. Kim., E. J. Yoon., S. K. Kang., J. C. Ra., S. H. Hong.

Arthritis & Rheumatism Vol. 64, Issue 1, pages 243-253, 2012

[14]

Serum soluble MD-1 levels increase with disease progression in autoimmune prone MRLlpr/lpr mice

S. Sasakia., Y. Nagaia., T. Yanagibashia., Y. Watanabea., M. Ikutania., A. Kariyonea., K. Tsuneyamab., Y. Hiraia., K. Takatsua.

Molecular Immunology Vol.49,Issue4,611-620, 2012

[16]

Deamidation of Gliadin Peptides in Lamina Propria: Implications for Celiac Disease

H. Skovbjerg., D. Anthonsen., E. Knudsen. and H. Sjostrom.

J of Clinical Immunology Vol.31 ( 6) 1038-1044 , 2011

[17]

Transgenic Mice that Overexpress Human IL-15 in Enterocytes Recapitulate Both B and T Cell-Mediated Pathologic Manifestations of Celiac Disease

S. Yokoyama., K. Takada., M. Hirasawa., L. P. Perera., and T. Hiroi.

J of Clinical Immunology Vol. 31,(6) , 2011

[18]

Coincidence of autoantibody production with the activation of natural killer T cells in a-galactosylceramide-mediated hepatic injury

H. Matsumoto., T. Kawamura., T. Kobayashi., Y. Kanda., H. Kawamura., T. Abo.

Immunology Vol. 133, Issue 1, pages 21-28, 2011

[19]

Lack of B and T lymphocyte attenuator exacerbates autoimmune disorders and induces Fas-independent liver injury in MRL-lpr/lpr mice

Y. Oya., N. Watanabe. Y. Kobayashi., T. Owada., M. Oki., K. Ikeda. A. Suto., S. Kagami., K. Hirose., T. Kishimoto., and H. Nakajima.

Int. Immunol 23 (5): 335-344, 2011

[20]

Amelioration of systemic lupus erythematosus by withangulatin A in MRL/lpr mice

L. Sun., L. Zhou., M. Chen., R. Zhong., J. Liu.

Journal of Cellular Biochemistry Vol. 112, Issue 9, pages 2376-2382, 2011

[21]

Co-appearance of autoantibody-producing B220low B cells with NKT cells in the course of hepatic injury

Y. Fujii., H. Kawamura., T. Kawamura., Y. Kanda.,H. Matsumoto., T. Kobayashi., T. Yamamoto., T. Aoyama., T. Abo.

Cellular Immunology Vol.260,Issue2, 105-112, 2010

[22]

Identification and characterization of autoantibody-producing B220low B (B-1) cells appearing in malarial infection

Y. Kanda., H. Kawamura., H. Matsumoto., T. Kobayashi., T. Kawamura., T. Abo.

Cellular Immunology Vol.263,Issue1, 49-54, 2010

[23]

Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice

Z. Gu., K. Akiyama., X. Ma., H. Zhang., X. Feng., G. Yao., Y. Hou., L. Lu., GS. Gilkeson., RM. Silver., X. Zeng., S. Shi., L. Sun

Lupus Vol.19 No.13, 1502-1514, 2010

[24]

Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity

T. Kubo., Y. Uchida., Y. Watanabe., M. Abe., A. Nakamura., M. Ono., S. Akira., and T. Takai.

J of Experimental Medicine Vol.206 No.9 1971-1982, 2009

[25]

Deficiency in EBV-induced gene 3 (EBI3) in MRL/ lpr mice results in pathological alteration of autoimmune glomerulonephritis and sialadenitis

T. Igawa., H. Nakashima., A. Sadanaga., K. Masutani., K. Miyake., S. Shimizu., A. Takeda., S. Hamano., and H. Yoshida.

Modern Rheumatology Vol. 19, Number 1, 33-41, 2009

[26]

Oncostatin M deficiency leads to thymic hypoplasia, accumulation of apoptotic thymocytes and glomerulonephritis

E. Esashi1., H. Ito., K. Minehata., S. Saito., Y. Morikawa., A. Miyajima.

European Journal of Immunology Vol.39,Issue6, 1664-1670, 2009

[27]

Amelioration of human lupus-like phenotypes in MRL/lpr mice by overexpression of interleukin 27 receptor a (WSX-1)

N. Sugiyama., H. Nakashima., T. Yoshimura., A. Sadanaga., S. Shimizu., K. Masutani., T. Igawa., M. Akahoshi., K. Miyake., A. Takeda., A. Yoshimura., S. Hamano., H. Yoshida.

Ann Rheum Dis 67:1461-1467, 2008

[28]

Development of autoantibody responses in NC/Nga mice: its prevention by pulverized konjac glucomannan feeding

N. Onishi., S. Kawamoto., H. Suzuki., M. Hide., and K. Ono.

Archives of Dermatological Research Vol.300, 95-99, 2008

[29]

CD19 Regulates Skin and Lung Fibrosis via Toll-Like Receptor Signaling in a Model of Bleomycin-Induced Scleroderma

A. Yoshizaki., Y. Iwata., K. Komura., F. Ogawa., T. Hara., E. Muroi., M. Takenaka., K. Shimizu., M. Hasegawa., M. Fujimoto., T. F. Tedder., and S. Sato.

Am J Pathol. 172(6): 1650-1663, 2008

[30]

Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice

A. Sadanaga., H. Nakashima., M. Akahoshi., K. Masutani., K. Miyake., T. Igawa., N. Sugiyama., H. Niiro., M. Harada.

Arthritis & Rheumatism Vol.56, Issue 5, pages 1618-1628, 2007

[31]

Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages.

Kawane, K., Ohtani, M., Miwa, K., Kizawa, T., Kanbara, Y., Yoshioka, Y., and Yoshikawa, H.

Nature 443: 998-1002, 2006

[32]

Altered cytokine expression in mesenteric lymph nodes in a rat strain (Matsumoto Eosinophilic Shinshu) that spontaneously develops hypereosinophilia

S. Muto., M. Monnai., Y. Okuhara., M. Murakami., J. Kuroda., T. Ono., K. Matsumoto.

Immunology Vol. 116, Issue 3, pages 373-380, 2005

[33]

Amelioration of autoimmune nephritis by imatinib in MRL/lpr mice

Sadanaga, A., Nakashima, H., Masutani, K., Miyake, K., shimizu, S., Igawa, T., Sugiyama, N., Niiro, H., Hirakata, H., and Harada, M.

Arthritis Rheumatism 52: 3987-3996, 2005

[34]

Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor (WSX-1)

Shimizu, S., Sugiyama, N., Matsutani, K., Sadanaga, A., Miyazaki, Y., Inoue, Y., Akaboshi, M., Katafuchi, R., Hirakata, H., Harada. M., Hamano, S., Nakashima, H., and Yoshida, H.

J Immunol 175:7185-7192, 2005

[35]

Glucose intolerance in young TallyHo mice is induced by leptin-mediated inhibition of insulin.

Sung, Y.Y., Lee, Y.S., Jung, W.H., Kim, H.Y., Cheon, H.G., Yang, S.D., and Rhee, S.D.

Biochem Biopys Res Commun. 338: 1779-1787, 2005

[36]

Requirement for CD100-CD72 interactions in fine-tubing of B-cell antigen receptor signaling and homeostatic maintenance ofthe B-cell compartment.

Kumanogoh, A., Shikina, T., Watanabe, C., Takegahara, N., Suzuki, K., Yamamoto, M., Takamatsu, H., Prasad, D.V.R., Mizui, M., Toyohuku, T., Tamaru, M., Watanabe, D., Parnes, J.R., and Kikutani, H.

International Immuno, 17: 1277-1282, 2005

[37]

Chemical induction of HO-1 suppresses lupus nephritis by reducing local iNOS expression and synthesis of anti-dsDNA antibody.

Takeda, Y., Takeno, M., Iwasaki, M., Kobayashi, H., Kirino, Y., Ueda, A., Nagahama, K., Aoki, I., and Ishigatsubo, Y

Clin Exp Immunol. 138:237-244, 2004

[38]

The point mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130 synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like arthritis.

Ishihara, K., Sawa, S., Ikushima, H., Hirota, S., Atsumi, T., Kamimura, D., Park, S.J., Murakami, M., Kitanuma, Y., Iwakura, Y., and Hirano, T.

International Immunol. 16: 455-465, 2004

[39]

Inadequate induction of suppressor of cytokine signaling-1 causes systemic autoimmune disease

Fujimoto, M., Tsutsui, H., Xinshou, O., Tokumoto, M., Watanabe, D., Shima, Y., Yoshimoto, T., Hirakata, H., Kawase, I., Nakanishi, K., Kishimoto, T., and Naka, T.

International Immunol. 16: 303-314, 2004

[40]

Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity.

Hanada, T., Yoshida, H., Kato, S., Tanaka, K., Matsutani, K., Tsukada, J., Nomura, Y., Mimata, H., Kubo, M., and Yoshimura, A.
Immunity: 19: 437-450, 2003

[41]

Association of Cathepsin E Deficiency with Development of Atopic Dermatitis

Tsukuba et al.

J Biochem (Tokyo). 134: 893-902, 2003

[42]

Fc RIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease.

Yajima, K., Nakamura, A., Sugahara, A., and Takai, T.

Eur J Immunol, 33:(4) 1020-1029, 2003 

[43]

A Point Mutation of Tyr-759 in Interleukin 6 Family Cytokine Receptor Subunit gp130 Causes Autoimmune Arthritis

T. Atsumi., K. Ishihara., D. Kamimura., H. Ikushima., T. Ohtani., S. Hirota., H. Kobayashi., S. Park., Y. Saeki., Y. Kitamura. and T. Hirano

J Exp Med, 196, Number 7, 979-990, 2002

[44]

A novel assay kits for autoantibodies rate on spontaneous autoimmune model mice.

Kikukawa, T, Kojima, M., and Abe, C.

Jap J Inflammation 20: 697-701, 2000

产品列表
产品编号 产品名称 产品规格 产品等级 备注
631-02699 LBIS® Mouse Anti-dsDNA ELISA Kit
LBIS® 抗dsDNA-小鼠ELISA试剂盒
96 tests

LBIS Human IL-7 ELISA Kit 短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

LBIS Human IL-7 ELISA Kit
短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS Human IL-7 ELISA KitLBIS Human IL-7 ELISA Kit                              短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

FUJIFILM Wako Shibayagi Corporation的LBIS Cytokine ELISA Kit系列推出了新产品Human IL-7。对于现有产品因缺乏灵敏度而无法检测的正常样品和低浓度样品,新产品可以高灵敏度且重复性良好地进行检测。

IL-7主要由骨髓、胸腺、淋巴器官或组织的基质细胞等非造血细胞产生,是诱导干细胞分化为免疫细胞的细胞因子。成熟体由152个氨基酸组成。CD4+、CD8+两种细胞的增殖和发生、促进抗病毒活性,还与类风湿关节炎、慢性结肠炎的产生以及与嗜酸性粒细胞活性引起的哮喘有关。另外,作为抗癌药和免疫检查点相关药物联合治疗中的助推因子,高灵敏度IL-7的检测,在NK细胞、B细胞和T细胞的增强作用物质的探索和研究中也备受期待。

特点


● 不适用于卡塔赫纳生物安全议定书(不含杆状病毒)

● 微量样品的检测

● 可短时间检测(总反应时间:2 h 50 min)

● 使用环保防腐剂

● 准确性和重复性高



◆性能

 样品

 人血清/血浆(肝素/EDTA)

 校准曲线范围

 1.50~236 pg/mL

 Assay内差异(5次检测,2个样品)

 平均C.V.   值:不足15%

 Assay间差异(3次检测,3个样品,4天)

 平均C.V.   值:不足15%

◆数据


■ 人样品检测(例)

Sample No.

检测值

Sample No.

检测值

1

3.9

7

3.78

2

2.44

8

11

3

7.59

9

40

4

6.21

10

10

5

9.36

11

3.5

6

5.35

人正常血清,2重检测,单位:pg/mL

试剂盒组成


● 抗体固定96孔板···········································96 wells(8×12)×1张

● 人IL-7标准品······················································································1瓶

● 缓冲液···················································································60 mL×1瓶

● 生物素结合抗IL-7抗体······································································1瓶

● 过氧化物酶·亲和素结合物···············································150 μL×1瓶

● 显色液(TMB)··································································12 mL×1瓶

● 反应终止液(1 mol/L H2SO4)·····································12 mL×1瓶

● 浓缩清洗液(10×)···························································100 mL×1瓶

◆产品列表

产品编号

厂家编号

产品名称

包装

637-50441

AKH-IL7

LBIS Human IL-7 ELISA Kit
人IL-7 ELISA试剂盒

96 tests

相关产品

产品编号

厂家编号

产品名称

标准曲线范围(pg/mL)

包装

635-42311

AKH-IL6

LBIS Human IL-6 ELISA Kit
人IL-6 ELISA试剂盒

1.16~500

96 tests

632-42321

AKH-IL8

LBIS Human IL-8 (CXCL8)ELISA Kit
人IL-8(CXCL8)ELISA试剂盒

0.686~500

96 tests

639-42331

AKHTNFA

LBIS Human TNF-α ELISA Kit
人 TNF-α ELISA试剂盒

2.05~500

96 tests

631-40831

AKHVEGF

LBIS Human VEGF ELISA Kit
人VEGF ELISA试剂盒

1.10~800

96 tests

631-47891

AKHIFNG

LBIS Human IFN-γ ELISA Kit
人IFN-γELISA试剂盒

0.768~75.0

96 tests


 

LBIS® 抗dsDNA抗体检测用ELISA Kit LBIS® 自我免疫疾病 肾病研究

LBIS® 抗dsDNA抗体检测用ELISA Kit
LBIS® 自我免疫疾病 肾病研究

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

自我免疫疾病 肾病研究LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究

抗 dsDNA 抗体检测用 ELISA Kit

■ LBIS® Anti dsDNA-Mouse ELISA Kit

■ LBIS® Anti ssDNA-Mouse ELISA Kit

■ LBIS® Rheumatoid Factor IgG-Mouse ELISA Kit

■ LBIS® Rheumatoid Factor IgM-Mouse ELISA Kit

 


◆特点

 

● 短时间测定

● 微量样品(稀释样品)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 标准曲线范围:15.6~1,000 mU/mL

 

 

◆精度测试

 

● 组内变异:平均 C.V.值 10% 以下

● 组间变异:平均 C.V.值 10% 以下

 

 

◆样品:血清或血浆

 

● 含抗 dsDNA 和抗 ssDNA 的血浆采血是不可使用肝素

● 用本品配备的缓冲液稀释检体,稀释范围如下:

      稀释倍数: 51 倍、101 倍、201~

LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究

MRL/lpr产生抗体随时间的变化

MRL/lpr 小鼠(n=7)

随着时间的推移,测量血清抗体 MRL/lpr 小鼠(n=7)的值。

测试值为平均值±标准偏差值,随着年龄增加,自身抗体增加。

 

治疗实验与 MRL/lpr 20 周龄相比较 IgG-RF 抗体,IgM-RF 抗体,抗 ssDNA 抗体值有意的受到抑制。(*p<0.05)


相关资料


LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究 LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究 LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究
AKRDD061说明书 ELISA试剂盒选择指南①② ELISA试剂盒选择指③④
LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究

LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究

LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究
AKRIE-010说明书 AKRRG-101说明书 AKRRG-111说明书

产品列表
产品编号 产品名称 产品规格 产品等级 备注
637-02691 (AKRDD-061)LBIS® Anti dsDNA-Mouse ELISA Kit 96 tests
630-02701 (AKRSD-051)LBIS® Anti ssDNA-Mouse ELISA Kit 96tests
633-02671 (AKRRG-101)LBIS® Rheumatoid Factor IgG-Mouse ELISA Kit 96tests
630-02681 (AKRRG-111)LBIS® Rheumatoid Factor IgM-Mouse ELISA Kit 96tests
639-02891 (AKRIE-010)LBIS® IgE Mouse ELISA Kit 96 tests
632-04341 (AKRIE-011)LBIS® IgE Rat ELISA Kit 96 tests

LBIS 小鼠/大鼠胰岛素ELISA试剂盒(发光型) 胰岛素检测

LBIS 小鼠/大鼠胰岛素ELISA试剂盒(发光型)
胰岛素检测

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

胰岛素检测LBIS 小鼠/大鼠胰岛素ELISA试剂盒(发光型)                              胰岛素检测

LBIS 小鼠/大鼠胰岛素ELISA试剂盒(发光型)


本产品为定量检测小鼠或大鼠胰岛素的抗体夹心ELISA试剂盒,血清、血浆、培养上清液和细胞提取液中的胰岛素均可检测。

本产品采用发光检测系统,可检测从低浓度到高浓度的胰岛素。因此使用一个试剂盒即可涵盖检测从空腹到进食后样品的所有检测,避免重复检测。此外,只需少量样品即可检测,有效节省珍贵样品。

◆特点

● 检测范围广:39 pg/mL – 20,000 pg/mL

● 减少重复检测的频率。无需单独检测空腹或进食后的样品。

● 少量样品即可检测:5 μL/well

● 当需要对同一样品进行其他项目的检测时,可节约珍贵的检测样品。

◆性能


标准曲线范围:38.1 pg/mL – 20,000 pg/mL

检测对象:胰岛素

检测对象样品:小鼠/大鼠血清、血浆、培养上清液、细胞提取液

所需样品量:5 μL

检测时间:2 h

检测方法:发光系统 ※检测需要酶标仪


标准曲线(例)


LBIS 小鼠/大鼠胰岛素ELISA试剂盒(发光型)                              胰岛素检测

操作方法

抗体固相化96孔板

↓ 清洗4次

氧化物酶结合抗胰岛素抗体——50 μL

↓ 搅拌

样品或标准溶液——5 μL

↓ 搅拌,室温静置2 h反应

↓ 清洗4次

发光试剂——50 μL

↓ 搅拌1 min

检测荧光强度

◆试剂盒组成


抗体固相化96孔板——1块(8×12列)

标准小鼠/大鼠胰岛素溶液(200 ng/mL)——50 μL/1支

缓冲液——60 mL/1支

过氧化物酶结合抗胰岛素抗体——100 μL/1支

发光试剂1——6 mL/1支

发光试剂2——6 mL/1支

浓缩清洗液(10×)——100 mL/1支

封板膜——1片

使用说明书——1份

◆数据

精度测试(组内变异)

样品

Sample 1

Sample 2

1

5.23

0.776

2

5.27

0.768

3

5.36

0.844

4

5.38

0.782

5

5.35

0.809

mean

5.31

0.795

SD

0.065

0.031

CV(%)

1.2

3.8

单位:ng/mL,血清

▍ 重复性测试(组间变异)

样品

Sample 1

Sample 2

Sample 3

0天

2.48

0.664

0.175

1天

2.52

0.642

0.171

2天

2.55

0.618

0.16

3天

2.42

0.621

0.163

mean

2.49

0.636

0.167

SD

0.056

0.021

0.0069

CV(%)

2.2

3.3

4.1


单位:ng/mL,血清

▍ 加标回收测试


样品(血清)

添加量

实测值

回收量

回收量(%)

0

0.294

0.256

0.544

0.25

97.7

0.64

0.891

0.597

93.3

1.6

1.85

1.56

97.5

4

4.05

3.76

94


单位:ng/mL,n=2

样品(血浆-EDTA)

添加量

实测值

回收量

回收量(%)

0

0.346

0.256

0.592

0.246

96.1

0.64

0.949

0.603

94.2

1.6

1.85

1.5

93.8

4

4.26

3.91

97.8


单位:ng/mL,n=2

◆产品列表


产品编号 生产商编号 产品名称 包装
637-54721 AKRIN-111L LBIS Mouse/Rat Insulin ELISA Kit (Luminescent type)
LBIS 小鼠/大鼠胰岛素ELISA试剂盒(发光型)
96次用

※ 本页面产品仅供研究用,研究以外不可使用。

LBIS牛血清白蛋白ELSIA试剂盒 LBIS Bovine Albumin ELISA Kit

LBIS牛血清白蛋白ELSIA试剂盒  

LBIS Bovine Albumin ELISA Kit

image.png

白蛋白存在于细胞和体液中,主要类型为高水溶性的蛋白,同时也存在糖基化的白蛋白。血清白蛋白分子量约为69 kDa,占血浆蛋白56-60%,等电点为4.9,在肝细胞中合成。

血清白蛋白是血清蛋白的主要组成部分,在维持渗透压中起重要作用,在生理上与脂肪酸、胆红素和甲状腺素等难溶于水的物质结合,并协助其运输。血清白蛋白浓度的降低,通常是由于肝硬化等引发的白蛋白生物合成减少、营养不良或热性病损耗的体蛋白所导致的血液中白蛋白的消耗,以及肾障碍引起的尿液渗出等原因所致。

在健康人的尿液中,血清白蛋白的排泄量每天仅在30 mg以下,但由于患肾脏疾病时渗出至尿液的白蛋白会增多,因此患肾小球肾炎、肾病综合征、糖尿病性肾病等肾脏疾病时的尿白蛋白水平会升高。另外,发烧、高血压、充血性心力衰竭、尿路感染等情况下,尿白蛋白水平也有可能会升高。即使是健康人,在经过剧烈运动或肌肉劳动后、热水沐浴后、精神兴奋、压力和摄入大量蛋白后以及月经前,尿白蛋白会短暂性增加,这种现象也被称为生理性或功能性蛋白尿或运动性蛋白尿。此外,仅在站立时才出现的蛋白尿主要发现于年轻人中。

人类中有一种罕见的先天性疾病,称为低白蛋白血症,也称为无白蛋白血症,但正确来说是含有极少量白蛋白,临床症状为轻度水肿和中度低血压,尚未观察到肝功能异常或蛋白尿。动物中大鼠有无白蛋白血症analbuminemia的模型,是由佐佐木研究所的Sumi Nagase老师以SD大鼠建立的,被称为NAR(Nagase analbuminemia rat)。

血清白蛋白的检测,使用TIA检测系统宏观上效果不错,FUJIFILM Wako Shibayagi也可以提供大鼠和小鼠的自动检测仪器用TIA试剂盒,然如果要实现高灵敏度和微量检测则需用到ELISA。富士胶片和光Shibayagi的LBIS Albumin ELISA Kit除了可定量检测血液中、尿液中与疾病相关的白蛋白外,还可应用于体外白蛋白生物合成实验系统、从培养体系中纯化得到的生物药中FBS等的残留污染检测,NAR中肝细胞和肝组织移植后白蛋白产生的标记成功与否的研究等等。

 

◆试剂盒特点

● 可快速检测(总反应时间:2.5 h)

● 检测范围:0.78~50 ng/mL

● 所需样品量:100 μL/well

● 使用环保的防腐剂

● 所有试剂均为即开即用的溶液

● 高检测准确性和可重复性

 

使用目的

● 检测培养基来源的牛血清白蛋白(BSA/FBS)

● 细胞和组织加工产品

● 单克隆抗体生产工艺

● 重组蛋白生产工艺

试剂盒的组成

 

组成内容 状态 包装
 (A)抗体固定96孔板(干板型) 清洗后使用 96 wells(8×12)/1支
 (B)标准白蛋白溶液(500 ng/mL) 稀释后使用 200 μL/1支
 (C)缓冲液 直接使用 60 mL/1支
 (D)过氧化物酶结合抗白蛋白抗体 稀释后使用 200 μL/1支
 (F)显色液(TMB) 直接使用 12 mL/1支
 (H) 反应停止液(1M H2SO4) ※ 使用注意 直接使用 12 mL/1支
 (I)浓缩清洗液(10×) 稀释后使用 100 mL/1支
 封板膜 —— 3张
 使用说明书 —— 1份

 

 

交叉反应性

 

物种 交叉反应率(%)
100%
小鼠 小于0.05%
大鼠 小于0.05%
小于0.05%

 

※ 交叉反应率为1000 ng/mL浓度下检测的数据。

 

 

◆样品信息

 

检测样品中牛白蛋白残留污染

※ 检测时,制备合适倍率的缓冲液,用作检测用的稀释样品。

※ 请注意本试剂盒对于检测牛血清·血浆样品十分敏感。需稀释约一百万倍。

 

 

◆检测范围

 

0.78~50 ng/mL(标准曲线范围)

 

 

◆Validation data

 

准确度测试(实验组内差异)

 

样品 A B C D
1 46 23.9 11.7 1.72
2 45.3 23.5 11.8 1.84
3 43.9 24.2 11.5 1.7
4 44.8 22.5 11.4 1.76
5 48 24.7 12.3 1.75
mean 45.6 23.8 11.7 1.75
SD 1.561 0.825 0.353 0.053
CV(%) 3.4 3.5 3 3

 

单位:ng/mL

 

可重复性测试(实验组间差异)

 

检测日/样品 E F G
第0日 1.48 5.7 24.3
第1日 1.55 6.2 25.6
第2日 1.5 6.35 25
第3日 1.56 6.25 25
mean 1.52 6.12 25
SD 0.042 0.288 0.545
CV(%) 2.8 4.7 2.2

 

单位:ng/mL n=3

 

加标回收测试

 

样品 H

 

添加量 实测值 回收量 回收率
0 3.06
1.5 4.58 1.52 101
3 5.8 2.74 91.3
3.75 6.79 3.73 99.5

 

单位:ng/mL n=3

 

样品 I

 

添加量 实测值 回收量 回收率
0 10.6
3.95 14.7 4.1 104
11.9 22.3 11.7 98.3
19.8 29.4 18.8 94.9

 

单位:ng/mL n=3

 

 

◆稀释直线性测试

 

使用连续性稀释缓冲液分4个阶段梯度稀释2个血清样品,并进行检测,结果显示直线回归的R2从0.9996变为了0.9997。

 

 

操作方法

 

抗体包被96孔板(干板型)

↓ 清洗4次

样品或标准溶液 100 μL

↓ 搅拌,室温(20~25 ℃),静置反应1 h

↓ 清洗4次

过氧化物酶结合抗白蛋白抗体 100 μL

↓ 搅拌,室温(20~25 ℃),静置反应1 h

↓ 清洗4次

显色液(TMB) 100 μL

↓ 搅拌,室温(20~25 ℃),静置反应30 min

反应终止液(1M H2SO4

↓ 搅拌

吸光度检测(主波长450 nm、副波长620 nm:600~650 nm)

 

 

FBS/FCS,液体培养基检测示例

 

样品 白蛋白检测值(mg/mL)
FBS-1 17.3
FBS-2 17.3
FCS-1 10.5
FCS-2 12.5
RPMI-1(10 %FBS) 1.39
RPMI-2(10 %FBS) 1.73

 

 

◆牛血清白蛋白(BSA)检测用试剂

 

牛血清白蛋白(BSA:Bovine Serum Albumin)

 

产品编号 产品名称 标准曲线范围 样品量
(稀释样品)
635-07099 LBIS Bovine Albumin ELISA kit

LBIS牛白蛋白 ELISA试剂盒

0.78~50 ng/mL 100 μL

 

已经验证可以检测样品中掺入的牛血清白蛋白,以及来源于生产过程的终产品中牛血清白蛋白残留杂质。

本产品仅供实验研究用,不可作临床应用。

 

 

点击此处下载产品宣传页

 

产品列表

产品编号 产品名称 产品规格 产品等级 备注
635-07099 LBIS Bovine Albumin ELISA kit
LBIS牛白蛋白 ELISA试剂盒
96 tests    

 

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒增加3种产品!

正常血清/血浆样本也可检测

LBIS® 系列



◆LBIS® Human IL-6 ELISA Kit


  IL-6 是 189 个氨基酸的分泌性糖蛋白,是促进B细胞分化成抗体生成细胞的细胞因子。有研究表示 ,IL-6 与类风湿关节炎的病情有关,其作用在类风湿关节炎等自身免疫性疾病、炎症性疾病领域受到关注。

  本试剂盒能短时间,高灵敏度检测人血清(血浆)中的微量 IL-6。

产品概要

● 标准曲线范围:1.16~500 pg/mL

● 检测时间:总反应时间 3 小时 50 分

● 样本量:100 μL

● 测定波长:主波长 450 nm /副波长 620 nm

● 样本:人血清/血浆(肝素/EDTA)

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒


〈标准曲线〉

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

 


◆LBIS® Human IL-8(CXCL8)ELISA Kit


  IL-8 是通过炎症性细胞因子的刺激在成纤维细胞或单核细胞、血管内皮细胞中产生的 72 或 77 个氨基酸的 2 种类型的炎症性 CXC 趋化因子。IL-8 与多种疾病的相关,并在类风湿关节炎、哮喘等呼吸道疾病、痛风、牙周炎、癌症等研究领域受到了关注。

  本试剂盒能短时间,高灵敏度检测人血清(血浆)中的微量 IL-8。

产品概要

● 标准曲线范围:0.686~500 pg/mL

● 检测时间:总反应时间 3 小时 50 分

● 样本量:100 μL

● 测定波长:主波长 450 nm / 副波长 620 nm

● 样本:人血清/血浆(肝素/EDTA)


〈标准曲线〉

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

 


◆LBIS® Human TNF-α ELISA Kit


  TNF-α 是能引起移植到小鼠中的肿瘤发生出血性坏死的诱导因子,是由 157 个氨基酸组成的炎症性细胞因子。TNF-α 与多种疾病相关,在类风湿关节炎、炎症、糖尿病・高血脂、肾病、白血病、骨质疏松等领域受到关注。

  本试剂盒能短时间,高灵敏度检测人血清(血浆)中的微量 TNF-α。


产品概要

● 标准曲线范围:2.05~500 pg/mL

● 检测时间:总反应时间 3 小时 50 分

● 样本量:100 μL

● 测定波长:主波长 450 nm / 副波长 620 nm

● 样本:人血清/血浆(肝素/EDTA)


〈标准曲线〉

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒



欲了解相关信息请点击文字:

新产品 人IL-6/IL-8/TNF-α ELISA试剂盒发售通知

Lbis® 疾病相关动物模型ELISA试剂盒系列

产品列表
产品编号 产品名称 产品规格 产品等级 备注
635-42311 人IL-6 ELISA试剂盒,AKH-IL6
LBIS®  Human IL-6 ELISA Kit
96次
632-42321 人IL-8(CXCL8) ELISA试剂盒,AKH-IL8
LBIS®  Human IL-8(CXCL8) ELISA Kit
96次
639-42331 人 TNF-α ELISA试剂盒,AKH-TNFA
LBIS®  Human TNF-α ELISA Kit
96次

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒 LBIS® High Molecular Adiponectin-Mouse/Rat

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒
LBIS® High Molecular Adiponectin-Mouse/Rat

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® High Molecular Adiponectin-Mouse/RatLBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒                              LBIS® High Molecular Adiponectin-Mouse/Rat

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒                              LBIS® High Molecular Adiponectin-Mouse/Rat


Adiponectin(脂联素)是脂肪细胞分泌的一种细胞因子。作为脂肪细胞因子,控制脂肪代谢和胰岛素感受性、是抗糖尿病、抗动脉粥样硬化、抗炎症的重要物质。血液中的脂联素通过聚集单聚体形成3聚体、6聚体或者是 12-18 聚体。三聚体(LMW)通过胶原三螺旋链的非共价相互作用以及球状体 C1q 域的疏水相互作用形成。三聚体聚集形成六聚体(MMW)或者更大的多聚体(HMW)。

Adiponectin 与各种各样的生长因子相结合有明显的亲和性,将其隔离能影响细胞的生长、血管新生和细胞组织的重建。血液中 HMW 的测定值除了表示总脂联素以外,同时明确地反映出 BMI 和性别、体重减轻的影响、糖耐量、肝脏的胰岛素感受性、代谢综合征和2型糖尿病。预计 HMW 的测定比起总脂联素的测定,对于代谢综合征和 DM2 的分析更有帮助。

LBIS® 的此款试剂盒只用于测定高分子 Adiponectin。

◆特点

 

● 短时间测定(总的反应时间:4小时)

● 微量样品可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

 

 

◆构成

 

组成部分

状态

容量

(A)   抗体固相化 96 孔板

洗净后使用

96 wells(8×12)/1块

(B)   标准溶液(2,000 ng/mL)

稀释后使用

200 μL/1 瓶

(C)   缓冲液

即用

60 mL/1 瓶

(D)   HRP标识抗脂联素抗体

稀释后使用

100 μL/1 瓶

(F)   显色液(TMB)

即用

12 mL/1 瓶

(H)   反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆交叉反应

动物种类

对象物质

反应性和交叉率(%)

Mouse

Adiponectin(HMW)

100

Adiponectin(Hexamer)

<5

Adiponectin(Trimer)

不存在交叉反应

Adiponectin(Monomer)

不存在交叉反应

MCH

不存在交叉反应

TNF-α

不存在交叉反应

IFN-γ

不存在交叉反应

Insulin

不存在交叉反应

Leptin

不存在交叉反应

Rat

Adiponectin(HMW)

100

Adiponectin(Monomer)

不存在交叉反应

TNF-α

不存在交叉反应

IFN-γ

不存在交叉反应

Insulin

不存在交叉反应

Leptin

不存在交叉反应

※交叉率浓度为1,000 ng/mL

◆样品信息

小鼠/大鼠的血清•血浆•培养液

50 μL/well(稀释样品)

※血浆采血建议使用肝素处理

※正常样品的稀释倍数为50倍(~25倍)

 

◆测量范围

3.13~200 ng/mL(标准曲线范围)

78.25~5,000 ng/mL(25倍稀释样品)

0.1565~10 μg/mL(50倍稀释样品)

 

◆Validation data

精度测试(组内变异)

样品

A

B

1

29.5

129

2

30.7

125

3

29.8

128

4

29.0

126

5

29.6

126

mean

29.7

127

SD

0.631

1.89

CV(%)

2.12

1.49

单位:ng/mL

重复性测试(组间变异)

测量日/样品

C

D

E

第0天

196

126

62.5

第1天

192

130

59.1

第2天

196

125

60.7

第3天

190

125

60.3

mean

193

127

60.7

SD

2.63

2.27

1.41

CV(%)

1.36

1.79

2.33

单位:ng/mL n=2

加标回收测试

样品H

添加量

实测值

回收量

回收率(%)

0

68.5

35.0

103

34.5

98.6

65.0

132

63.5

97.7

95.0

165

96.9

102

单位:ng/mL n=2



样品I

添加量

实测值

回收量

回收率(%)

0

23.3

18.0

40.3

17.0

94.4

26.0

50.6

27.3

105

32.0

55.5

32.2

101

单位:ng/mL n=2

 

稀释直线性测试

用稀释缓冲液分3次连续稀释2个血清样品的测量结果,直线回归方程的 R在 0.9987~0.9993 之间。

相关资料


LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒                              LBIS® High Molecular Adiponectin-Mouse/Rat LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒                              LBIS® High Molecular Adiponectin-Mouse/Rat LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒                              LBIS® High Molecular Adiponectin-Mouse/Rat
说明书

ELISA试剂盒选择指南①②

ELISA试剂盒选择指③④

参考文献



1.

Maternal intake of grape seed procyanidins during lactation induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Caimari A, Marine-Casado R, Boque N, Crescenti A, Arola L, Del Bas JM. Sci Rep. 2017 Oct 3;7(1):12573.


2.

Effects of β-Glucan Content and Pearling of Barley in Diet-Induced Obese Mice. Seiichiro Aoe, Yasunori Ichinose, Noriko Kohyama, Kozo Komae, Asuka Takahashi, Toji Yoshioka, and Takashi Yanagisawa. Posted online on 27 Sep 2017.

https://doi.org/10.1094/CCHEM-04-17-0083-R

3.

The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice. Romero-Zerbo SY, Ruz-Maldonado I, Espinosa-Jimenez V, Rafacho A, Gomez-Conde AI, Sanchez-Salido L, Cobo-Vuilleumier N, Gauthier BR, Tinahones FJ, Persaud SJ, Bermudez-Silva FJ. Sci Rep. 2017 Jun 21;7(1):3946.


4.

Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. Tang Y, Choi EJ, Han WC, Oh M, Kim J, Hwang JY, Park PJ, Moon SH, Kim YS, Kim EK. J Med Food. 2017 May;20(5):502-510


5.

Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice. Kang JH, Lee HA, Kim HJ, Han JS. Nutr Res Pract. 2017 Feb;11(1):17-24.


6.

Oleuropein aglycone enhances UCP1 expression in brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. Oi-Kano Y, Iwasaki Y, Nakamura T, Watanabe T, Goto T, Kawada T, Watanabe K, Iwai K. J Nutr Biochem. 2017 Feb;40:209-218.


7.

Mild Hyperbaric Oxygen Inhibits Growth-related Decrease in Muscle Oxidative Capacity of Rats with Metabolic Syndrome. Takemura A, Ishihara A. J Atheroscler Thromb. 2017 Jan 1;24(1):26-38.


8.

Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Chung SI, Ryu SN, Kang MY. Nutrients. 2016 Oct 21;8(10).


9.

Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Miyazaki T, Shirakami Y, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M. Oncotarget. 2016 Mar 1;7(9):10448-58.


10.

Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice. Sone H, Kamiyama S, Higuchi M, Fujino K, Kubo S, Miyazawa M, Shirato S, Hiroi Y, Shiozawa K. Biochem Biophys Res Commun. 2016 Jul 29;476(3):134-9.


11.

Reduced rat plasma lysophosphatidylglycerol or lysophosphatidic acid level as a biomarker of aristolochic acid-induced renal and adipose dysfunctions. Tsutsumi T, Okamoto Y, Yamakawa S, Bingjun C, Ishihara A, Tanaka T, Tokumura A. Life Sci. 2016 Jul 15;157:208-16.


12.

Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Wang Z, Hwang SH, Lee SY, Lim SS. Nutr Res Pract. 2016 Jun;10(3):282-7.


13.

Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Zang Y, Igarashi K, Li Y. Biosci Biotechnol Biochem. 2016 May 12:1-7.


14.

The combination of maternal and offspring high-fat diets causes marked oxidative stress and development of metabolic syndrome in mouse offspring. Ito J, Nakagawa K, Kato S, Miyazawa T, Kimura F, Miyazawa T. Life Sci. 2016 Apr 15;151:70-5.


15.

Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK. Oowatari Y, Ogawa T, Katsube T, Iinuma K, Yoshitomi H, Gao M. Biosci Biotechnol Biochem. 2016 May 3:1-8.


16.

Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice. Sone H, Kamiyama S, Higuchi M, Fujino K, Kubo S, Miyazawa M, Shirato S, Hiroi Y, Shiozawa K. Biochem Biophys Res Commun. 2016 May 12


17.

Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice. Saito M, Tanaka M, Misawa E, Yao R, Nabeshima K, Yamauchi K, Abe F, Yamamoto Y, Furukawa F. Biosci Biotechnol Biochem. 2016 Apr 4:1-9.


18.

The combination of maternal and offspring high-fat diets causes marked oxidative stress and development of metabolic syndrome in mouse offspring. Ito J, Nakagawa K, Kato S, Miyazawa T, Kimura F, Miyazawa T. Life Sci. 2016 Apr 15;151:70-75.


19.

Total and high molecular weight adiponectin levels in the rat model of post-myocardial infarction heart failure. Kalisz M, Baranowska B, Wolinska-Witort E, Maczewski M, Mackiewicz U, Tulacz D, Gora M, Martynska L, Bik W. J Physiol Pharmacol. 2015 Oct;66(5):673-80.


20.

Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Zang Y, Igarashi K, Yu C. Biosci Biotechnol Biochem. Vol.79(1), p117-23, 2015.


21.

Dietary Administration of Aloe Vera Gel Extract Inhibits Intestinal Polyp Formation in Min Mice Fed a High-Fat Diet. Chihara T, Shimpo K, Beppu H, Kaneko T, Higashiguchi T, Sonoda S, Tanaka M, Yamada M and Abe. Pharm Anal Acta 2015, 6:3


22.

Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice. Ohno T, Shimizu M, Shirakami Y, Miyazaki T, Ideta T, Kochi T, Kubota M, Sakai H, Tanaka T, Moriwaki H. Hepatol Res. Jul 2015.


23.

Effects of liquid konjac on parameters related to obesity in diet-induced obese mice. Aoe S, Kudo H, Sakurai S. Biosci Biotechnol Biochem. Vol.79(7), p1141-6, Jul 2015.


24.

The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Zang Y, Zhang L, Igarashi K, Yu C. Food Funct. Vol.11;6(3), p834-41, Mar 2015.


25.

Ashitaba (Angelica keiskei) extract prevents adiposity in high-fat diet-fed C57BL/6 mice. Zhang T, Yamashita Y, Yasuda M, Yamamoto N, Ashida H. Food Funct. Vol.6(1), p134-144, Jan 2015.


26.

Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Zang Y, Igarashi K, Yu C. Bioscience, Biotechnology, and Biochemistry, Vol.79(1), 2015.


27.

Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Food Funct. Vol.5(10), p2420-29, Oct 2014.


28.

Functional ingredients and cardiovascular protective effect of pumpkin seed oils. Al-Okbi SY., Mohamed DA., Kandi E., Ahmed EK., Mohammed SE. Source: Grasas y Aceites, Vol.65(1), p1-10, Jan-Mar 2014.


29.

The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice. Fukuda-Tsuru S., Kakimoto T., Utsumi H., Kiuchi S., Ishi S. European Journal of Pharmacology, Vol.723(15), p207-215, Jan 2014.


30.

Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: Suppressing effects of EGCG on the development of liver lesions. Kochi T., Shimizu M, Terakura D., Baba A., Ohno T., Kubota M., Shirakami Y., Tsurumi H., Tanaka T., Moriwaki H. Cancer Letters, Vol342(1), p60-69, Jan 2014.


31.

Anti-glycation Activity of Japanese Chestnut (Castanea crenata) Inner Skin Extract is Beneficial for Type 2 Diabetes in a Rat Model. Mizutani T., Shizuka F., Matsuzawa T., Amano Y., Arikawa Y. Anti-Aging Medicine, Vol.10(6), p112-119, 2014.


32.

Chronic Administration of Bovine Milk-Derived α-Lactalbumin Improves Glucose Tolerance via Enhancement of Adiponectin in Goto-Kakizaki Rats with Type 2 Diabetes. Yamaguchi M., Takai S. Biological and Pharmaceutical Bulletin, Vol.37(2014) No.3, p.404-408, 2014.


33.

Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Kawano, Y., Ohta, M., Hirashita, T., Masuda, T., Inomata, M., Kitano. S. Obesity Surgery, Vol.23(12), p1947-1956, Dec 2013.


34.

Quercetin glucosides promote ischemia-induced angiogenesis, but do not promote tumor growth. Sumi M., Tateishi N., Shibata H., Ohki T., Sat M. Life Sciences, Vol.93(22), p814-819, Nov 2013.


35.

I ntake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Tsuduki T., Kikuchi I., Kimura T., Nakagawa K., Miyazawa T. Food Chemistry, Vol.139(1-4), p16-23, Aug 2013.


36.

Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Y.Kawano, M.Ohta, T.Hirashita, T.Masuda, M.Inomata, S.Kitano. Obesity Surgery, Jul 2013.


37.

Rosehip Extract Inhibits Lipid Accumulation in White Adipose Tissue by Suppressing the Expression of Peroxisome Proliferator-activated Receptor Gamma. Nagatomo A., Nishida N., Matsuura Y.and Shibata N. Prev Nutr Food Sci, Vol.18(2), p85-91, Jun 2013.


38.

Glucose Use in Fasted Rats Under Sevoflurane Anesthesia and Propofol Anesthesia. K.Sato, T.Kitamura, G.Kawamura, Y.Mori, R.Sato, Y.Araki, Y.Yamada. Anesth Analg, Jun 2013.


39.

Supplementing Obese Zucker Rats with Niacin Induces the Transition of Glycolytic to Oxidative Skeletal Muscle Fibers. Ringseis R., Rosenbaum S., Gessner D.K., Herges L., Kubens J.F., Mooren F-C., Kruger K. and Eder K. J.Nutr, Vol.143(2), p125-131, Feb 2013.


40.

Quercetin intake during lactation modulates the AMP-activated protein kinase pathway in the livers of adult male rat offspring programmed by maternal protein restriction. Sato S., Mukai Y., Saito T. The Journal of Nutritional Biochemistry, Vol.24(1), p118-123, Jan 2013.


41.

Azuki bean polyphenols intake during lactation upregulate AMPK in male rat offspring exposed to fetal malnutrition. Mukai Y,Sun Y, Sato S. Nutrition, Vol.29(1), p291-297, Jan 2013.


42.

Effect of Angiotensin II Type 2 Receptor-Interacting Protein on Adipose Tissue Function via Modulation of Macrophage Polarization. F.Jing, M.Mogi, L.-J.Min, K.Ohshima, H.Nakaoka, K.Tsukuda, X.Wang, J.Iwanami, M.Horiuchi. PLOS one, 2013.


43.

Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Y. Yamashita., M. Okabe., M. Natsume., H. Ashida. Archives of Biochemistry and Biophysics, Mar 2012.


44.

High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivator-1α messenger RNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., I. Takeda., K. Tsuda., A. Ishihara. Nutrition Research, Vol.32(2), p144-151, Feb 2012.


45.

Oral Ingestion of Aloe vera Phytosterols Alters Hepatic Gene Expression Profiles and Ameliorates Obesity-Associated Metabolic Disorders in Zucker Diabetic Fatty Rats. E. Misawa., M. Tanaka., K. Nomaguchi., K. Nabeshima., M. Yamada., T. Toida., and K. Iwatsuki. J. Agric. Food Chem., Vol.60 (11), p2799-2806, 2012.


46.

The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., M. Kouzaki., N. Gu., I. Takeda., K. Tsuda., and A. Ishihara. The Journal of Physiological Sciences, Vol. 62, p105-114, Nov 2012.


47.

Roles of Interleukin 17 in Angiotensin II Type 1 Receptor-Mediated Insulin Resistance. K. Ohshima., M. Mogi., F. Jing., J. Iwanami., K. Tsukuda., L-J. Min., J. Higaki., M. Horiuchi. American Heart Association. Hypertension. Vol.59, p493-499, 2012.


48.

A Comparative Study of Gastric Banding and Sleeve Gastrectomy in an Obese Diabetic Rat Model. T. Masuda., M. Ohta., T. Hirashita., Y. Kawano., H. Egucji., K. Yada., Y. Iwashita., S. Kitano. Obesity Surgery, Aug 2011.


49.

Anti-Diabetic Effects of a Kaempferol Glycoside-Rich Fraction from Unripe Soybean (Edamame,Glycine max L.Merrill.’Jindai’) Leaves on KK-Ay Mice. Y. Zang., H. Sato., K. Igarashi. Biosci.Biotechnol.Biochem, Vol.75(9), p1677-1684, 2011.


50.

Effects of visceral fat resection and gastric banding in an obese diabetic rat model. T. Hirashita., M. Ohta., Y. Endo., T. Masuda., Y. Iwashita., S. Kitano. Surgery, Vol.151(1), p6-12, 2012.


51.

Preventive Effects of Curcumin on the Development of Azoxymethane-Induced Colonic Preneoplastic Lesions in Male C57BL/KsJ-db/db Obese Mice. M. Kubota., M. Shimizu., H. Sakai., Y. Yasuda., D. Terakura., A. Baba., T. Ohno., H. Tsurumi., T. Tanaka., H. Moriwaki. Nutrition and Cancer, Vol.64(1), 2012.


52.

Preventive Effects of Curcumin on the Development of Azoxymethane-Induced Colonic Preneoplastic Lesions in Male C57BL/KsJ-db/db Obese Mice. M. Kubota., M. Shimizu., H. Sakai., Y. Yasuda., D. Terakura., A. Baba., T. Ohno., H. Tsurumi., T. Tanaka., H. Moriwaki. Nutrition and Cancer, Vol.64(1), 2012.


53.

Antihyperlipidemic and Body Fat-Lowering Effects of Silk Proteins with Different Fibroin/Sericin Compositions in Mice Fed with High Fat Diet. Chung-Won Seo,In Chul Um,Catherine W.Rico,and Mi Young Kang. J.Agric.Food Chem. Vol.59, p4192-4197, 2011.


54.

Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. C,Arai.,N,Arai.,A,Mizote.,K,Kohno.,K,Iwaki.,T,Hanaya.,S,Arai.,S,Ushio.,S,Fukuda. Nutrition Research, Vol.30(12), p840-848, 2010.


55.

Combined Effects of Short-term Calorie Restriction and Exercise on Insulin Action in Normal Rats. H,Y,Jiang.,T,Koike.,P,Li.,Z,H,Wang.,Y,Kawata.,Y,Oshida. Horm Metab Res,  Vol.42(13), p950-954, 2010.


56.

Dietary Hesperidin Exerts Hypoglycemic and Hypolipidemic Effects in Streptozocin-Induce Marginal Type 1 Diabetic Rats. Akiyama,S., Katsumata,S., Suzuki,K., Ishimi,Y.,Wu,J., and Uehara,M. J Clin Biochem Nutr.January, Vol.46(1), p87-92, 2010.


57.

Hypoglycemic and Hypolipidemic Effects of Hesperidin and Cyclodextrin-Clathrated Hesperetin in Goto-Kakizaki Rats with Type 2 Diabetes. Akiyama,S., Katsumata,S., Suzuki,K., Nakayama,Y., Ishimi,Y. and Uehara,M. Bioscience,Biotechnology,and Biochemistry. Vol.73, No.12, p2779-2782, 2009.


产品列表
产品编号 产品名称 产品规格 产品等级 备注
638-13079 (AKMAN-011)LBIS® Mouse/Rat HMW Adiponectin ELISA Kit
LBIS® 小鼠/大鼠 高分子量脂联素 ELISA试剂盒
96 tests