[1]
|
Ayabe, H., Anada, T., Kamoya, T., Sato, T., Kimura, M., Yoshizawa, E., Kikuchi, Shunyuu., Ueno,
Yasuharu., Sekine, keisuke., J. Gray Camp., Treutlein, B., Ferguson, Autumn., Suzuki, Osamu.,
Takede, Takanori.. Optimal Hypoxia Regulates Human iPSC-Derived Liver Bud Differentiation
through Intercellular TGFB Signaling. Stem Cell Reports, 11, 1-11, (2018)
|
[2]
|
Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M., Ingber, D. E.. Directed differentiation
of human induced pluripotent stem cells into mature kidney podocytes and establishment of a
lomerulus Chip. Nature protocols, 13(7), 1662, (2018)
|
[3]
|
Ishii, K., Sakurai, H., Suzuki, N., Mabuchi, Y., Sekiya, I., Sekiguchi, K., Akazawa, C.. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell
Reports, 10, 1-15, (2018)
|
[4]
|
Ishida, K., Xu, H., Sasakawa, N., Lung, M. S. Y., Kudryashev, J. A., Gee, P., & Hotta, A.. Site-specific
randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in
human cells. Scientific Reports, 8(1), 310, (2018)
|
[5]
|
Takayama, K., Hagihara, Y., Toba, Y., Sekiguchi, K., Sakurai, F., Mizuguchi, H.. Enrichment of high-
functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research.
Biomaterials, (2018)
|
[6]
|
Akiyama, T., Sato, S., Chikazawa-Nohtomi, N., Soma, A., Kimura, H., Wakabayashi, S., Ko, S.B., Ko, M. S.. Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by
combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific Reports, 8(1), 1189, (2018)
|
[7]
|
Saito, A., Ooki, A., Nakamura, T., Onodera, S., Hayashi, K., Hasegawa, D., Okudaira,T., Watanabe, K., Kato, H., Onda, T., Watanabe, A., Kosaki, K., Nishimura, K., Ohtaka, Manami., Nakanishi, M.,
Sakamoto, T., Yamaguchi, A., Sueishi, K., Azuma, T.. Targeted reversion of induced pluripotent
stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat
calvarial bone defect model. Stem Cell Research & Therapy, 9(1), 12, (2018)
|
[8]
|
Yamauchi, K., Li, J., Morikawa, K., Liu, L., Shirayoshi, Y., Nakatsuji, N., Elliott, A. D., Hisatome, I.,
Suemori, H..Isolation and characterization of ventricular-like cells derived from NKX2-5 eGFP/w
and MLC2v mCherry/w double knock-in human pluripotent stem cells. Biochemical and
Biophysical Research Communications, 495(1), 1278-1284, (2018)
|
[9]
|
Mae, S., Ryosaka, M., Toyoda, T., Matsuse, K., Oshima, Y., Tsujimoto, H., Okumura, S., Shibasaki, A., Osafune, K.. Generation of branching ureteric bud tissues from human pluripotent stem cells.
Biochemical and biophysical research communications, 495(1), 954-961, (2018)
|
[10]
|
Kagihiro, M., Fukumori, K., Aoki, T., Ungkulpasvich, U., Mizutani, M., Viravaidya-Pasuwat, K.,&
Kino-oka, M.. Kinetic analysis of cell decay during the filling process: Application to lot size
determination in manufacturing systems for human induced pluripotent and mesenchymal stem cells. Biochemical Engineering Journal, 131, 31-38, (2018)
|
[11]
|
Zhang, R. R., Koido, M., Tadokoro, T., Ouchi, R., Matsuno, T., Ueno, Y., Sekine, K., Takebe, T.,
Taniguchi, H.. Human iPSC-Derived Posterior Gut Progenitors Are Expandable and Capable of
Forming Gut and Liver Organoids. Stem Cell Reports, 10(2), 1?14, (2018)
|
[12]
|
Oshima, K., Saiki, N., Tanaka, M., Imamura, H., Niwa, A., Tanimura, A., Nagahashi, A., Hirayama, A., Okitac, K., Hotta, A., Kitayama, S., Osawa, M., Kaneko, S., Watanabe, A., Asaka, I., Fujibuchi, W.,
Imai, K., Yabe, H., Kamachi, Y., Hara, J., Kojima, S., Tomita, M., Soga, T., Noma, T., Nonoyama, S.,
Nakahata, T., Saito, MK.. Human AK2 links intracellular bioenergetic redistribution to the fate of
hematopoietic progenitors. Biochemical and Biophysical Research Communications, 497(2), 719-
725, (2018)
|
[13]
|
Sougawa, N., Miyagawa, S., Fukushima, S., Kawamura, A., Yokoyama, J., Ito, E., Harada, A.,
Okimoto, K., Mochisuki-Oda, N., Saito, A., Sawa, Y.. Immunologic targeting of CD30 eliminates
tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy. Scientific Reports, 8(1), 3726, (2018)
|
[14]
|
Yasuda, S. Y., Ikeda, T., Shahsavarani, H., Yoshida, N., Nayer, B., Hino, M., Vartak-Sharma, N.,
Suemori, H., Hasegawa, K.. Chemically defined and growth-factor-free culture system for the
expansion and derivation of human pluripotent stem cells. Nature Biomedical Engineering, 2(3),
173, (2018)
|
[15]
|
Kim, S. I., Matsumoto, T., Kagawa, H., Nakamura, M., Hirohata, R., Ueno, A., Ohishi, M., Sakuma, T., Soga, T., Yamamoto, T., Woltjen, K.. Microhomology-assisted scarless genome editing in human
iPSCs. Nature Communications, 9(1), 939, (2018)
|
[16]
|
Hayashi, R., Ishikawa, Y., Katori, R., Sasamoto, Y., Taniwaki, Y., Takayanagi, Tsujikawa, M.,
Sekiguchi, K., Quantock, A. J., Nishida, K. . Coordinated generation of multiple ocular-like cell
lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature
Protocols, 12(4), 683-696, (2017)
|
[17]
|
Kikuchi, T., Morizane, A., Okita, K., Nakagawa, M., Yamakado, H., Inoue, H., Takahashi, R.,
Takahashi, J. . Idiopathic Parkinson's disease patient‐derived induced pluripotent stem cells
function as midbrain dopaminergic neurons in rodent brains. Journal of Neuroscience Research,
95(9),1829-37, (2017)
|
[18]
|
Miyazaki, T., Isobe, T., Nakatsuji, N., & Suemori, H. . Efficient Adhesion Culture of Human
Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Scientific Reports, 7
(41165), 1-8, (2017)
|
[19]
|
Goparaju, S. K., Kohda, K., Ibata, K., Soma, A., Nakatake, Y., Akiyama, T., Wakabayashi, S.,
Matsushita, M., Sakota, M., Kimura, H., Yuzaki, M., Shigeru B. H. Ko & Minoru S. H. Ko. . Rapid
differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding
transcription factors. Scientific Reports, 7, 42367, (2017)
|
[20]
|
Musah, S., Mammoto, A., Ferrante, C. T., Jeanty, S.S., Hirano-Kobayashi, M., Mammoto, T., Roberts, K., Chung, S., Novak, R., Ingram, M., Fatanat-Didar, T., Koshy, S., Weaver, C. J., Church, M. G.,
Ingber, F. D. . Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute
kidney glomerular-capillary-wall function on a chip. Nature Biomedical Engineering, 1 (0069),
(2017)
|
[21]
|
Camp, J. G., Sekine, K., Gerber, T., Loeffler-Wirth, H., Binder, H., Gac, M., Kanton, S., Kageyama, J., Damm, G., Seehofer, D., Belicova, L., Barsacchi, M., Barsacchi, R., Okuda, R., Yoshizawa, E., Kimura, M., Ayabe, H., Taniguchi, H., Takebe, T., & Belicova, L.. Multilineage communication regulates
human liver bud development from pluripotency. Nature, 546, 533-538, (2017)
|
[22]
|
Polisetti, N., Sorokin, L., Okumura, N., Koizumi, N., Kinoshita, S., Kruse, F. E., and Schlotzer-
Schrehardt, U. Laminin-511 and-521-based matrices for efficient ex vivo-expansion of human
limbal epithelial progenitor cells. Scientific Reports, 7, 5152, (2017)
|
[23]
|
Hongo, A., Okumura, N., Nakahara, M., Kay, E. P., & Koizumi, N.. The Effect of a p38 Mitogen-
Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal
Endothelial CellsEffect of a p38 MAPK Inhibitor on Corneal Endothelial Cells. Investigative Ophthalmology & Visual Science, 58(9), 3325-3334, (2017)
|
[24]
|
Taniguchi, Y., Li, S., Takizawa, M., Oonishi, E., Toga, J., Yagi, E., & Sekiguchi, K. Probing the acidic
residue within the integrin binding site of laminin-511 that interacts with the metal ion-
dependent adhesion site of α6β1 integrin. Biochemical and Biophysical Research
Communications, 487(3), 525-531, (2017)
|
[25]
|
Sekine, S. I., Kondo, T., Murakami, N., Imamura, K., Enami, T., Shibukawa, R., Tsukita, K., Funayama, M., Inden, M., Kurita, H., Hozumi, I., Inoue, H.. Induced pluripotent stem cells derived from a
patient with familial idiopathic basal ganglia calcification (IBGC) caused by a variant in SLC20A2
gene. Stem Cell Research, (2017)
|
[26]
|
Tan, G. W., Kondo, T., Murakami, N., Imamura, K., Enami, T., Tsukita, K., Shibukawa, R., Funayama, M., Matsumoto, R., Ikeda, I., Takahashi, R., Inoue, H.. Induced pluripotent stem cells derived from an autosomal dominant lateral temporal epilepsy (ADLTE) patient carrying S473L mutation in
leucine-rich glioma inactivated 1 (LGI1). Stem Cell Research, (2017)
|
[27]
|
Sato-Nishiuchi, R., Li, S., Ebisu, F., Sekiguchi, K.. Recombinant laminin fragments endowed with
collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen
matrices. Matrix Biology, (2017)
|
[28]
|
Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S.,
Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J.. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease
model. Nature, 548, 592-596, (2017)
|
[29]
|
Takizawa, M., Arimori, T., Taniguchi, Y., Kitago, Y., Yamashita, E., Takagi, J., Sekiguchi, K..
Mechanistic basis for the recognition of laminin-511 by α6β1 integrin. Science Advances, 3(9),
e1701497, (2017)
|
[30]
|
Morizane, A., Kikuchi, T., Hayashi, T., Mizuma, H., Takara, S., Doi, H., Mawatari, A., Glasser, M.F.,
Shiina, T., Ishigaki, H., Itoh, Y., Okita, K., Yamasaki, E., Doi, D., Onoe, H., Ogasawara, K., Yamanaka, S., and Takahashi, J. . MHC matching improves engraftment of iPSC-derived neurons in non-
human primates. Nature Communications, 8(1), 385, (2017)
|
[31]
|
Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S.,
Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J. . human ips cell-derived dopaminergic neurons function in a primate Parkinson's disease
model. Nature, 548(7669), 592-596, (2017)
|
[32]
|
Kojima, Y., Sasaki, K., Yokobayashi, S., Sakai, Y., Nakamura, T., Yabuta, Y., Nakaki, F., Nagaoka, S., Woltjen, K., Hotta, A., Yamamoto, T., Saitou, M.. Evolutionarily Distinctive Transcriptional and
Signaling Programs Drive Human Germ Cell Lineage Specification from Pluripotent Stem
Cells. Cell Stem Cell, 21(4), 517-532.e5, (2017)
|
[33]
|
Taguchi, A., & Nishinakamura, R.. Higher-Order Kidney Organogenesis from Pluripotent Stem
Cells. Cell Stem Cell, 21. (2017)
|
[34]
|
Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., Funayama, S., Nakanishi, N., Hisai, T., Kobayashi, T., Kasai, T., Kitada, R., Mori, A., Ayabe, H., Ejiri, Y., Amimoto, N., Yamazaki, Y., Ogawa, S., Ishikawa, M., Kiyota, Y., Sato, Y., Nozawa, K., Okamoto, S., Ueno, Y., Kasai, T.. Massive
and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell
Reports, 21(10), 2661-2670, (2017)
|
[35]
|
Uchimura, T., Otomo, J., Sato, M., Sakurai, H.. A human iPS cell myogenic differentiation system
permitting high-throughput drug screening. Stem cell research, 25, 98-106, (2017)
|
[36]
|
Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., Harada, A., Sato-
Nishiuchi, R., Sekiguchi, K., Sawa, Y.. Novel Stem Cell Niches Laminin 511 Promotes Functional
Angiogenesis Through Enhanced Stem Cell Homing by Modulating" Stem Cell Beds" in the Failed Heart.Circulation, 136(1), A15587, (2017)
|
[37]
|
Samata, B., Doi, D., Nishimura, K., Kikuchi, T., Watanabe, A., Sakamoto, Y., Kakuta, J., Ono, Y.,&
Takahashi, J.. Purification of functional human ES and iPSC-derived midbrain dopaminergic
progenitors using LRTM1. Nature Communications, 7(13097), 1-11, (2016)
|
[38]
|
Hayashi, R., Ishikawa, Y., Sasamoto, Y., Katori, R., Nomura, N., Ichikawa, T., Araki, S., Soma, T.,
Kawasaki, S., Sekiguchi, K., Tsujikawa, M., Nishida, K., & Quantock, A. J.. Co-ordinated ocular
development from human iPS cells and recovery of corneal function. Nature, 531(7594), 376-380, (2016)
|
[39]
|
Matsuno, K., Mae, S. I., Okada, C., Nakamura, M., Watanabe, A., Toyoda, T., Uchida, E., Osafune, K.. Redefining definitive endoderm subtypes by robust induction of human induced pluripotent
stem cells.Differentiation; research in biological diversity, (2016)
|
[40]
|
Nishimura, K., Doi, D., Samata, B., Murayama, S., Tahara, T., Onoe, H., & Takahashi, J.. Estradiol
Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal
Circuits via Activation of Integrin α5β1. Stem cell reports, 6(4), 511-524, (2016)
|
[41]
|
Takayama, K., Mitani, S., Nagamoto, Y., Sakurai, F., Tachibana, M., Taniguchi, Y., Sekiguchi,K.,
Mizuguchi, H.. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochemical and biophysical research communications, 474(1), 91-96, (2016)
|
[42]
|
Kawamura, T., Miyagawa, S., Fukushima, S., Maeda, A., Kashiyama, N., Kawamura, A., Miki, K.,
Okita, K., Yoshida, Y., Shiina, T., Ogasawara, K., Miyagawa, S., Toda, K., Okuyama, H., Sawa,Y..
Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem cell reports, 6(3), 312-
320, (2016).
|
[43]
|
Tanigawa, S., Taguchi, A., Sharma, N., Perantoni, A. O., & Nishinakamura, R.. Selective in vitro
propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell
reports, 15(4), 801-813, (2016)
|
[44]
|
Okumura, N., Kakutani, K., Numata, R., Nakahara, M., Schlotzer-Schrehardt, U., Kruse, F., Kinoshita. K., Koizumi, N.. Laminin-511 and-521 Enable Efficient In Vitro Expansion of Human Corneal
Endothelial CellsLaminin-511 and-521 Enable Expansion of HCECs. Investigative ophthalmology & visual science, 56(5), 2933-2942, (2015)
|
[45]
|
Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., Nakamura, S., Sekiguchi, K., Sakuma, T., Yamamoto, T., Mori, T.,
Woltjen, K., Nakagawa, M., Yamamoto, T., Takahashi, K., Yamanaka, S., Saitou, M.. Robust in vitro
induction of human germ cell fate from pluripotent stem cells. Cell stem cell, 17(2), 178-194,
(2015)
|
[46]
|
Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D.,
Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T., Osafune, K., Sekiguchi, K., & Yamanaka, S. . A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem
cells. Scientific reports, 4(3594), 1-7, (2014)
|
[47]
|
Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., Sekiguchi, K., Nakagawa, M., Parmar, M., Takahashi, J.. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem cell reports, 2(3), 337-350, (2014)
|
[48]
|
Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J.,
Mansfield, W., Reik, W., Bertone, P., Smith, A.. Resetting transcription factor control circuitry
toward ground-state pluripotency in human. Cell, 158(6), 1254-1269, (2014)
|
[49]
|
Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., Nagata, S., Matsumoto, Y.,
Yamamoto, T., Umeda, K., Heike, T., Okumura, N., Koizumi, N., Sato, T., Nakahata, T., Saito, M.,
Otsuka, T., Kinoshita, S., Ueno, M., Ikeya, M., Toguchida, J. . Derivation of mesenchymal stromal
cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PloS one, 9(12), e112291, (2014)
|
[50]
|
Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., & Wu, J. C. . Chemically defined generation of human cardiomyocytes. Nature methods, 11(8), 855-860, (2014)
|
[51]
|
Miyazaki, T., Futaki, S., Suemori, H., Taniguchi, Y., Yamada, M., Kawasaki, M., Hayashi, M., Kumagai, H., Nakatsuji, N., Sekiguchi, K., & Kawase, E. . Laminin E8 fragment support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature communications, 3(1236), 1-10,
(2012)
|
[52]
|
Taniguchi, Y., Ido, H., Sanzen, N., Hayashi, M., Sato-Nishiuchi, R., Futaki, S., & Sekiguchi, K. . The C-terminal region of laminin β chains modulates the integrin binding affinities of laminins. Journal
of Biological Chemistry, 284(12), 7820-7831, (2009)
|
[53]
|
Ido, H., Nakamura, A., Kobayashi, R., Ito, S., Li, S., Futaki, S., & Sekiguchi, K. . The requirement of
the glutamic acid residue at the third position from the carboxyl termini of the laminin γ chains in integrin binding by laminins. Journal of Biological Chemistry, 282(15), 11144-11154, (2007)
|