烯丙基酰化反应的高效率钯催化剂


烯丙基酰化反应的高效率钯催化剂

烯丙基酰化反应的高效率钯催化剂



自然科学研究机构  分子科学研究所  生命、复合体分子科学研究领域  复合体催化剂研究部门  滨坂刚


◆前言


  使用过渡金属催化有机反应,是合成各种有机化合物的有效方法。特别是用钯催化剂实现碳-碳成键反应,现广泛应用于实验室甚至是化学工业的反应过程中1)。另一方面,在这些反应中,为了能高效获得目标分子,科学家们普遍认为有必要加入百分之几的钯。但是,钯混入产物中会成为问题。特别是合成医药品或者有机功能材料等,要求产物中不能混入过渡金属,去除这些过渡金属要花费大量成本(例如如果要遵从ICH-Q3D指导方针2)的话,内服药中钯含量的上限仅为10ppm)。而且,由于钯的克拉克值不高,未来也有可能出现资源枯竭等问题。为了解决这些问题,使用低于ppm数量级且超高效催化剂的研发备受瞩目3)

  钳形配合物是一种高效配合物催化剂4)。我们以沟吕木-赫克反应和铃木-宫浦反应作为模型反应来评估它的催化活性。图1中展示了能有效地催化沟吕木-赫克反应的具有代表性的钳配合物催化剂5)。我们对高效率配合物催化剂的研发很感兴趣,在开展钳形配合物催化剂的研究时,我们发现了拥有1,10−邻菲咯啉结构的钯NNC-钳形配合物(图2:DPP-NNC Pd)在烯丙基乙酸衍生物和有机硼酸化合物的作用下,能超高效率催化烯丙基位酰化反应6)。2013年东京大学理学研究系的盐谷教授的团队公开了DPP-NNC Pd的合成方法7),且通过X光结晶结构分析等手段明确了DPP-NNC Pd的构造,但他们还未对DPP-NNC Pd催化功能进行研究。本文将会为大家介绍使用了DPP-NNC Pd作为催化剂后超高效率催化烯丙基位酰化反应。



◆DPP-NNC Pd的合成


  在开始进行催化剂功能研究时,我们决定先合成大量的DPP-NNC Pd。进一步改良了盐谷教授团队的合成法后,我们成功合成出了10g左右的DPP-NNC Pd(图2)。合成的具体方法如下,将2,9-二苯基-1,10-邻菲咯啉和双(乙腈)氯化钯(ll)加入甲苯-甲醇混合溶剂中,在室温下搅拌30分钟后再加热至50℃搅拌6个小时,最后进行过滤就能得到10.05g目标配合物,回收率高达97%。这个复合体在空气中性质稳定,实验操作也很容易进行。


烯丙基酰化反应的高效率钯催化剂

图1 具有代表性的钯钳形配合物


烯丙基酰化反应的高效率钯催化剂

图2 DPP-NNC Pd的合成

 



◆烯丙基位酰化反应:配合物催化剂及溶剂研究


  由乙酸烯丙酯和有机硼酸化合物产生的烯丙基位酰化反应,是催化性碳-碳成键反应的一种。研究人员普遍认为,在进行这个反应时为了得到目标产物,催化剂剂量必须超过1mol%,使用低于ppm数量级的催化剂剂量来进行这个反应的例子很少9)。但我们发现,在催化剂剂量低于ppm数量级时,DPP-NNC Pd 能使烯丙基位酰化反应有效进行。本节中将探讨使用DPP-NNC Pd作为催化剂时烯丙基位酰化反应的条件。

使用0.1mol%剂量的DPP-NNC Pd,在50℃的甲醇中进行肉桂酸乙酯(1a)和四苯基硼酸钠的反应时,反应在1小时内完成,能得到目标生成物3aa,分离产率91%(表1,entry1)。得到这个结果后,考虑到在这个催化剂系中催化剂剂量有可能可以更进一步地减少,我们又尝试进行了将催化剂剂量减少至1mol ppm(0.0001mol%)的反应。这次反应条件和催化剂剂量为0.1mol%时一样,反应在50℃的甲醇中进行,反应开始24小时后原料被完全消耗,得到3aa,分离产率87%(entry2)。这个反应的原料使用了10mmol乙酸烯丙酯来进行,显示出这个催化剂体系可在比较大规模的反应中进行的杰出性能。另外在无添加催化剂的情况下反应不能进行(entry3)。在对溶剂进行研究时,我们还证实了在THF或者水中反应能进行到70%左右(entries4 and 5)。但是,在DMF、四氯乙烷和甲苯中反应不能进行(entries6-9)。因此,适合进行本反应的溶剂是甲醇。

  我们尝试进一步减少催化剂剂量,结果发现催化剂剂量为1mol ppb(0.0000001mol%)时反应也能进行(图3)。反应时间24小时时收率为27%,催化剂转化数(TON)为270,000,000次,催化剂转化频率(TOF)为11,250,000h-1。再把反应时间延长至96小时,则收率升到50%,TON达到500,000,000次。据我们所知,这个催化剂转化数是烯丙基位酰化反应的世界最高纪录。

  关于和DPP-NNC Pd一样拥有1,10−邻菲咯啉结构的配合物,我们对其催化剂活性也进行了研究。在使用配合物(4-6)进行1,10−邻菲咯啉、2-苯基-1,10−邻菲咯啉和2,9-二甲基-1,10−邻菲咯啉作为配体的反应时,分别能得到收率16%(TON=160,000),45%(TON=450,000)以及56%(TON=560,000)的目标化合物。我们认为空间位阻会影响催化剂活性。另一方面,在同样的反应条件下,使用DPP-NNC Pd作为催化剂时TON达到270,000,000次,比使用配合物4-6作为催化剂时的TON值大了3位数,表明钳形构造的配合物反应时有更高的活性。


烯丙基酰化反应的高效率钯催化剂

表1 肉桂酸乙酯和四苯基硼酸钠的反应


烯丙基酰化反应的高效率钯催化剂

图3 使用了1mol ppb的DPP-NNC Pd催化的烯丙基位酰化反应

 


◆烯丙基位酰化反应:底物通用性


  我们还进行了使用这个催化剂体系的底物通用性的研究(图4)。反应规模为10mmol乙酸烯丙酯衍生物(1)、20mmol四苯基硼酸钠(2),并使用1mol ppm的DPP-NNC Pd作催化剂,在50℃的甲醇中进行。拥有供电子基(MeO、Me、tBu、Ph)及吸电子基(CF3、NO2、C(O)Me、COOMe)的肉桂酸乙酯衍生物和四苯基硼酸钠的反应,能得到目的酰化生成物(3ba-3ia),分离收率为77-95%。DPP-NNC Pd也能有效地催化拥有萘基的乙酸烯丙酯衍生物(1j)、立体且庞大的2-甲基及2-甲氯基置换肉桂酸乙酯的反应(1k和1l)。1mol ppm的催化剂剂量也能使肉桂酸乙酯(1a)和四苯基硼酸钠(2b-d)的反应有效地进行,并且能得到酰化生成物4ab-ad,收率59-84%。此外我们还研究了缺乏反应性的脂肪族置换乙酸烯丙酯衍生物(1m-q)。进行直链脂肪族烷基(1m)、分支状脂肪族烷基 (1n)、环状脂肪族烷基(1o)置换乙酸烯丙酯和四苯基硼酸钠(2a)的反应,能得到对应酰化生成物(3ma-oa),收率为71-78%。同时还证实了乙酸乙烯酯(1p)及乙酸香叶酯(1q)的反应也同样能有效进行。而且DPP-NNC Pd还能有效催化2级乙酸烯丙酯衍生物(1r及1s)和2a的反应。上述的研究显示了这个催化剂体系具有大范围的底物通用性。但很遗憾的是,在同样的反应条件下,使用带吡啶和噻吩的乙酸烯丙酯衍生物作为底物时,反应几乎不能进行。


烯丙基酰化反应的高效率钯催化剂

图4 带有不同官能团的乙酸烯丙酯衍生物和四苯基硼酸钠的反应

 


◆预备的反应结构研究


  为了了解有关使用了DPP-NNC Pd催化的烯丙基位酰化反应的反应机制,我们进行了一些研究。首先,加入DPP-NNC Pd(1mol ppm)催化分支状乙酸烯丙酯衍生物(7)和四苯基硼酸钠(2a)的反应时,能得到底物是肉桂酸乙酯时相同的生成物(图5a)。该结果暗示在反应中生成π-烯丙基钯中间体。接着,在进行DPP-NNC Pd和四苯基硼酸钠(2a)的等量反应时,能得到几乎定量的苯基化配合物(8)(图5b)。但DPP-NNC Pd不能和肉桂酸乙酯进行等量反应(图5c)。使得到的配合物8和肉桂酸乙酯进行反应,能得到化合物3aa(图5d)。还有就是用复合体8作为催化剂,肉桂酸乙酯(1a)和四苯基硼酸钠(2a)的反应进行良好,能得到3aa,分离收率为93%(图5e)。根据以上的结果我们推断,复合体8是这个烯丙基位酰化反应中的中间体。


烯丙基酰化反应的高效率钯催化剂

图5 反应机制研究



◆结语


  我们发现,从ppb到ppm数量级的NPP-NNC Pd在温和的反应条件下,都能极高效率地催化各种乙酸烯丙酯衍生物和烯丙基位酰化反应,并以高收率得到对应的酰化生成物。TON最大达到500,000,000次。所以,本研究显示了NPP-NNC Pd能极高效率地催化烯丙基位酰化反应。

  同时,我们期待NPP-NNC Pd也能让其他的催化反应高效地进行。现在,这个配合物“对其他催化反应是否适用”“是否能使各种反应在规定的ppm或者ppb数量级的催化剂剂量下有效进行”的研究还在持续开展中。



◆谢辞


  本研究于自然科学研究机构分子科学研究所复合体催化剂研究部门鱼住研究室进行。研究室的主持人鱼住泰广教授在整个研究过程中给予了指导,对此我们向鱼住泰广教授致以诚挚的谢意。另外还要对樱井扶美惠博士在我们进行实验时提供了帮助表示感谢。

 

【参考文献】

[1] (A) Torborg, C. and Beller, M. : Adv. Synth.Catal ., 351, 3027-3043 (2009). 

   (B) Magano,J.and Dunetz, J. R. : Chem. Rev ., 111, 2177-2250(2011)

[2]   ICH Q3D能从以下的网页下载:链接

[3] (C) Farina, V. : Adv. Synth. Catal ., 346, 1553-1582( 2004).

   (D) Deraedt, C. and Astruc, D.  :Acc. Chem. Res ., 47, 494-503( 2014)

[4]  最近的综述:Selander, N. and Szabó, K. J. :Chem. Rev ., 111, 2048-2076( 2011)

[5] (A) Ohff, M., Ohff, A., van der Boom, M. E.and Milstein, D. : J. Am. Chem. Soc ., 119,11687-11688 (1997).

   (B) Miyazaki, F.,Y a m a g u c h i , K . a n d S h i b a s a k i , M . :Tetrahedron Lett .,40, 7379-7383 (1999). 

   (C)Jung, I. G., Son, S. U., Park, K. H., Chung, K.-C.,Lee, J. W. and Chung, Y. K. : Organometallics ,22, 4715-4720(2003). 

   (D) Huang, M.-H. and Liang, L.-C. : Organometallics , 23, 2813-2816(2004). 

   (E Takenaka, K. and Uozumi, Y. :Adv. Synth. Catal ., 346, 1693-1696 (2004). 

   (F) Yoon, M. S., Ryu, D., Kim, J. and Ahn, K. H. :Organometallics , 25, 2409-2411(2006).

[6] Hamasaka, G., Sakurai, F. and Uozumi, Y. :Chem. Commun ., 51, 3886-3888( 2015).

[7] Kuritani, M., Tashiro, S. and Shionoya, M. :Chem.—Asian J ., 8, 1368-1371( 2013).

[8] Pigge, F. C. : Synthesis , 1745-1762( 2010).

[9] (A) Sarkar, S. M., Uozumi, Y. and Yamada, Y.M. A. : Angew. Chem. Int. Ed ., 50, 9437-9441(2011). 

   (B) Yamada, Y. M. A., Sarkar, S. M.and Uozumi, Y. : J. Am. Chem. Soc ., 134, 3190-3198( 2012).

 


◆催化剂转化数


  是催化剂性能的一个指标,催化剂转化数相当于生成物的摩尔数或者催化剂的摩尔数。该数值越高催化剂的效率就越高。



◆钳形配合物


  是一个桥头位有金属的2环形金属配合物。配合基一般拥有1个阴性配位点(如C)和2个中性配位点(如N、P、S)。人们不仅利用钳形配合物作催化剂,还试着将其作为功能性有机金属化合物来使用。

 


◆超高活性 偶联反应用钯催化剂


DPP-NNC Pd

  本产品是仅使用数ppm催化剂量就可让反应进行的高活性偶联反应钯催化剂。


【参考文献】

[1] Hamasaka, G., Sakurai, F. and Uozumi, Y. : Chem. Commun ., 51, 3886( 2015)

 

产品编号

产品名称

规格

包装

044-34351

Diphenyl Phenanthroline NNC Palladium

【 DPP-NNC Pd】

有机合成用

100 mg

040-34353

500 mg

 

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成


N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

N端乙酰化和肉豆蔻酰化是蛋白中最常见的翻译后修饰之一,它们参与了蛋白的相互作用和亚细胞定位。为了阐明这些翻译后修饰的重要性,需要比较分析修饰蛋白和未修饰蛋白。但是,在使用大肠杆菌等活细胞制备蛋白的常规方法中,受细胞中固有的修饰酶影响,难以控制和制备未修饰蛋白和修饰蛋白。

 

在本研究中,使用仅由参与蛋白合成的因子组成的PURE system(产品名称:PUREfrex®),探讨制备N端修饰目标蛋白的方法,并以完全可控的状态成功合成了乙酰化或肉豆蔻酰化的蛋白。

◆由未甲酰化的初始蛋氨酸合成蛋白

◆NatB的N端乙酰化

◆NatA的N端乙酰化

◆NMT的N端肉豆蔻酰化

◆总结

由未甲酰化的初始蛋氨酸合成蛋白

在使用常规PURE system的蛋白合成中,与大肠杆菌内的翻译反应相同,由甲酰化的蛋氨酸进行翻译。但是,如果初始蛋氨酸的氨基被甲酰化,则不会发生N端修饰。因此,使用不含甲酰基供体(10-Formyl-tetrahydrofolate10-CHO-THF)的PURE system进行蛋白合成。结果表明,尽管不使用10-CHO-THF后合成效率有所降低,但仍成功合成了目标蛋白。

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

NatB的N端乙酰化

酵母NatB是一种由yNaa20和yNaa25组成的异源二聚体酶,它能将乙酰CoA的乙酰基转移至未甲酰化的初始蛋氨酸的氨基上。在不含10-CHO-THF的PURE system中加入目标蛋白、yNaa20及yNaa25的模板DNA和乙酰CoA进行反应。通过质谱分析合成的目标蛋白的N端肽,确认添加NatB DNA后被乙酰化。

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

NatA的N端乙酰化

酵母NatA是一种由yNaa10和yNaa15组成的异源二聚体酶,它将乙酰CoA的乙酰基转移至methionine aminopeptidase(MAP)切割初始蛋氨酸时暴露的第二个氨基酸的氨基上。因此,使用NatA进行乙酰化时,必须通过MAP去除N端的初始蛋氨酸。由于MAP会切割未甲酰化的初始蛋氨酸,因在不含10-CHO-THF的PURE system中添加目标蛋白、yNaa10、yNaa15的模板DNA、纯化MAP和乙酰CoA进行反应。通过质谱分析合成目标蛋白的N端肽,确认添加NatA DNA后被乙酰化。


N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

NMT的N端肉豆蔻酰化

NMT是一种可将MAP切割初始蛋氨酸后暴露出的第二个甘氨酸的氨基进行肉豆蔻酰化的酶。由于底物肉豆蔻酰 CoA会抑制蛋白合成反应,因此需先在不含10-CHO-THF的PURE system中分别合成目标蛋白和NMT。然后,将分别合成的目标蛋白、NMT及肉豆蔻酰CoA混合,进行肉豆蔻酰化反应。通过质谱分析合成目标蛋白的N端肽,确认添加NMT后被肉豆蔻酰化。

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

此外,在脂质体中进行上述的肉豆蔻酰化反应时,可观察到肉豆蔻酰化的蛋白在脂质体膜的定位状态。

N端修饰蛋白(乙酰化、肉豆蔻酰化)的合成

● 实验步骤概述(A)

● 去除初始蛋氨酸的GFP通过hNMT1(Δ80)在脂质体内被肉豆蔻酰化,还可观察到其向脂质体膜迁移(B)

● 根据3、6、9、12和24 h的反应时间绘制GFP膜定位的比率(C)

● 未添加肉豆蔻酰-CoA(D)或hNMT1(Δ80)基因(E)时,无法观察到GFP的膜定位

总结

该项研究结果表明,通过使用PURE system,可在完全可控下制备N端修饰蛋白,还可以确认翻译后修饰的合成蛋白在脂质体膜上的定位。此外,PURE system还能合成修饰酶,无需纯化即可用于修饰反应。该方法也适用于其他修饰酶,可以简便地进行各种翻译后修饰反应的分析和应用。

 

该项研究是GeneFrontier、东京工业大学和海洋研究开发机构(JAMSTEC)的共同研究。论文发表在ACS Synthetic Biology,可通过以下链接免费下载。

“Regulated N-Terminal Modification of Proteins Synthesized Using a Reconstituted Cell-Free Protein Synthesis System”
ACS Synthetic Biology (2023) 12, 1935-1942

相关产品:

PUREfrex® 无细胞蛋白合成试剂盒