CYTO-ID® 自噬检测试剂盒
CYTO-ID® Autophagy detection kit
- 产品特性
- 相关资料
- Q&A
- 参考文献
CYTO-ID® 自噬检测试剂盒
CYTO-ID® Autophagy Detection Kit 使用新型染料检测自噬小泡和监控活细胞自噬流,选择性标记积累的自噬小泡。染料已通过优化,不染溶酶体,在自噬前体、自噬体和自噬溶酶体里呈现出明亮的荧光。该试剂盒提供了一种无需细胞转染,可以在活细胞中监控细胞自噬的快速定量方法。 |
CYTO-ID® Autophagy Detection Kit |
◆特点
● 无需转染,定量监测活细胞中的自噬情况
● 免去 LC3-GFP 转染所需的时间和精力以及转染效率的验证
● 含有特殊基团的专利染料选择性地染色自噬小泡
● 试剂盒中包含已知活性的自噬抑制剂与激活剂
● 快速量化原生异质性细胞群中的自噬
● 选择性地全方位染色,可检测和区分自噬流(autophagic flux)和自噬溶酶体的积累
● 不染溶酶体,减少其他染料的背景干扰
● 便于高通量筛选自噬激活剂和抑制剂
◆原理
该产品所用探针是阳离子两亲性示踪剂(CAT)染料,以类似诱导磷脂药物的方式迅速进入到细胞中。染料的功能基团能够选择性标记与自噬通路相关的小泡,而不会在溶酶体中聚集。
胞内物质被扩大的膜囊包裹,吞噬泡形成双层膜囊泡,成为自噬体。自噬体外膜随后与溶酶体融合,和内部物质被自噬性溶酶体降解。自噬的各种调节因子也被描绘于图中。 |
自噬原理图 |
◆应用
省时省力,无需转染即可自快速全面的标记自噬小泡 为了演示 CYTO-ID® Green detection reagent 的优势,先用 RFP-LC3 表达载体转染 HeLa 细胞,10 μM 的 Tamoxifen 处理过夜,然后用 CYTO-ID® 绿色检测试剂染色。LC3 转染法需要过夜,而 CYTO-ID® 绿色检测试剂的方法在15-30分钟内标记细胞达100%。图A:绿信号显示自噬小泡的 CYTO-ID® 绿染;图B:成功转染细胞的 RFP-LC3 表达(红色);图C:自噬体的特异性标记 LC3,与 CYTO-ID® 绿色染料标记的小泡共定位的复合图像。 |
的发放 |
|
无转染的自噬检测 Hela细胞进行饥饿与恢复,然后使用 CYTO-ID® Green detection reagent 标记。染料可以明确检测和量化自噬及与自噬诱导相关的自噬小泡前体。图1A:稳定表达 GFP-LC3 的CHO细胞,结果显示对照组与饥饿的细胞群的相对较差的基线分离,自噬难以量化。图1B:CYTO-ID® Autophagy Detection Kit 特异性标记 LC3 蛋白依赖的自噬小泡,免去转染操作。 |
||
自噬积累和自噬流的可视化 可用荧光显微镜观察CYTO-ID® 自噬绿色染料检测的自噬液泡积累和自噬流。Hela细胞用以下试剂进行模拟诱导,0.2% DMSO(A)和100 μM Clonidine hydrochloride(B)进行诱导,5 μM Loperamide hydrochloride 和 1 μM PP242 hydrate(D)在37°C诱导12小时。处理后,细胞在37℃下用CYTO-ID® Green Detection reagent 孵育10分钟,再用分析缓冲液清洗。细胞核被 Hoechst 33342 染料复染为蓝色。 |
||
避免非特异性溶酶体染色的背景干扰 相比其他 MDC 染色溶酶体检测,CYTO-ID® 绿色染料无溶酶体染色背景,CYTO-ID® Autophagy kit 无需紫外活细胞分析,在显微镜共标记应用中,与 Hoechst 染料兼容。 |
||
使用流式细胞仪通过 CYTO-ID® Autophagy Detection Kit 分析自噬 对照组(红线峰值)无诱导,10 uM Tamoxifen(ALX-550-095)处理 Jurkat 细胞(白血病T细胞)(蓝线峰值)。处理18小时后,细胞结合 CYTO-ID® 绿色检测试剂,然后不经过流式细胞仪清洗,进行分析。结果通过直方图呈现。对照组细胞被染色,但荧光亮度低。实验组中,CYTO-ID® 绿色荧光信号增加约2倍,表明 Tamoxifen 处理能引起 Jurkat 细胞中自噬的增加。 |
||
使用 mTOR 激酶抑制剂 Rapamycin 处理 HepG2 细胞孵育过夜,结果显示 CYTO-ID® 染色信号升高。 |
CYTO-ID® 绿色染料大多与 RFP-LC3蛋白共定位。0.1 μM Rapamycin(典型自噬诱导剂)处理过夜,转染 Hela 细胞表达RFP-LC3。 A: CYTO-ID® Green 染色; B: RFP-LC3; C: 合成图像。 |
CYTO-ID® 自噬检测试剂盒 2.0
◆相关产品
产品编号 |
产品名称 |
规格 |
备注 |
应用 |
ENZ-51002-25 |
GFP-Certified®Apoptosis/Necrosis detection kit 细胞凋亡/坏死检测试剂盒 |
25 assays |
多重检测,区分正常、 早期凋亡、晚期凋亡和坏死细胞,与GFP和其他绿色荧光探针兼容。 |
FC,荧光显微镜,荧光检测 |
ENZ-51002-100 |
100 assays |
|||
ENZ-51021-K200 |
Nuclear-ID®Green hromatin condensation detection kit 细胞核绿色染色体皱缩检测试剂盒
|
1 Kit |
高渗透性的绿色荧光染色增强了细胞凋亡诱导染色质固缩。
|
FC,荧光显微镜,荧光检测 |
ENZ-52406 |
NUCLEAR-ID®Red DNA stain DNA染色试剂盒(红色荧光) |
200 µL |
细胞可渗透的DNA染色应用广泛。 |
≥93%(HPLC),FC,荧光检测 |
ENZ-CHM103-0200 |
Nuclear-ID® Blue DNA stain (GFP-Certified®) Nuclear ID® 蓝色DNA染色(GFP细胞系) |
200 µL |
细胞可渗透的DNA染色应用广泛。 |
≥93%(HPLC),FC,荧光检测 |
ENZ-51015-KP002 |
Lyso-ID® Red cytotoxicity kit (GFP-Certified®) 溶酶体细胞毒理检测试剂盒(红色荧光)(绿色细胞系) |
1 Kit |
快速,定量和HTS-兼容的检测活细胞毒性试剂。 |
荧光显微镜,荧光检测 |
ENZ-51035-0025 |
PROTEOSTAT®Aggresome etection kit蛋白内稳态聚集体 检测 试剂盒 |
25 tests |
Robust、定量的聚集小体用于神经退行性疾病,肝病和毒理学研究 |
FC,荧光显微镜,荧光检测 |
ENZ-51035-K100 |
100 tests |
处理 |
目的 |
效果 |
μM |
诱导时间 (hrs) |
细胞系 |
饥饿 |
抑制哺乳动物Rapamycin (mTOR) |
激活自噬 |
N/A |
1~4 |
HeLa, HepG2, Jurkat |
Rapamycin |
抑制哺乳动物Rapamycin (mTOR) |
激活自噬 |
0.2 |
6~18 |
HeLa, Jurkat |
PP242 |
mTOR ATP-竞争性抑制剂 |
激活自噬 |
1 |
18 |
HeLa |
Lithium |
抑制IMPase 和降低inositol 和IP3水平; mTOR依赖性 |
激活自噬 |
10,000 |
18 |
HeLa, Jurkat |
Trehalose |
未知, mTOR依赖性 |
激活自噬 |
50,000 |
6 |
HeLa, Jurkat |
Bafilomycin A1 |
抑制 Vacuolar-ATPase |
抑制自噬 |
6~9*10-3 |
18 |
HeLa, Jurkat |
Chloroquine |
碱化 Lysosomal pH |
抑制自噬 |
10~50 |
18 |
HeLa, Jurkat |
Tamoxifen |
增加细胞内 ceramide的水平和消除PI3K的抑制效果 |
激活自噬 |
4~10 |
6~18 |
HeLa, HepG2, Jurkat |
Verapamil |
钙离子通道阻滞剂;降低胞浆内Ca2+水平; mTOR依赖性 |
激活自噬 |
40~100 |
18 |
HeLa, Jurkat |
HydroxyChloroquine |
Alkalinizes Lysosomal pH |
抑制自噬 |
10 |
18 |
HeLa, Jurkat |
Loperamide |
Ca2+ 通道阻滞剂;降低胞浆内 Ca2+浓度; mTOR依赖性 |
激活自噬 |
5 |
18 |
HeLa |
Clonidine |
咪唑啉-1受体激动剂; 降低 cAMP 水平; mTOR依赖性 |
激活自噬 |
100 |
18 |
HeLa |
MG-132 |
选择性蛋白酶抑制剂 |
激活自噬 |
2~5 |
18 |
HeLa, Jurkat |
Norclomipramine |
碱化Lysosomal pH |
抑制自噬 |
5-20 |
18 |
HeLa |
Epoxomicin |
选择性蛋白酶抑制剂 |
诱导聚集体 |
0.5 |
18 |
HeLa |
Velcade® |
选择性蛋白酶抑制剂 |
诱导聚集体 |
0.5 |
18 |
HeLa |
Amyloid beta peptide 1-42 |
引起氧化应激 |
诱导聚集体 |
25 |
18 |
SK-N-SH |
Cyto-ID®检测试剂盒 Q&A
Q:Cyto-ID®自噬检测试剂与活细胞孵育的最长时间是多少(几分钟/几小时/几天)?
A:我们建议 37℃ 孵育不超过 30 分钟。很多实验表明,孵育 1 小时不会伤害细胞。孵育超过 1 小时,一些细胞看上去状态不好。
Q:是否可用荧光显微镜观察 3D 培养细胞的自噬?
A:我们没有用该染料染过 3D 细胞,但是一小撮细胞是可以染色的。活体组织的话,由于染料的渗透性不好,不能进入样本的内部,所以效果不
A:理想。染白细胞是可以。
Q:用双重染料染在 37℃ 孵育 30 分钟后,细胞状态不好开始皱缩。有些细胞也从板上脱离,阳性对照和 DMSO 对照没有观察到特异性染色。
A:对于比较敏感的细胞,优化流程如下:
A:1. 使用 PBS/5% FBS 或者完全培养基作为 assay buffer,最好不含酚红。
A:2. 如果细胞状态仍然不好,建议染色时间缩短至 15~20 分钟。
A:3. 减少染料的浓度至 1000× 稀释。需要显微镜观察时延长荧光照射的时间。
A:4. 可能光褪色会导致信号模糊。建议使用封片剂防止光褪色。
Q:用流式检测的话,样品在用 Cyto-ID®自噬检测试剂孵育后多久可用流式观察?操作手册是说 30 分钟。是否可以在检测之前短暂的将样品放
A:置在冰上?
A:可以将样品放在冰上延长孵育的时间。一般的经验法则,尽可能缩短活细胞与染料的结合。缺氧,低温或者其他应激状态也可以诱导自噬。
Q:GFP-CertifiedTM 细胞凋亡/坏死检测试剂盒(ENZ-51002),Cyto-ID® 自噬检测试剂盒(ENZ-51031)是否可以同时染色,检测细胞凋
A:亡、坏死和自噬?
A:GFP-CertifiedTM 细胞凋亡/坏死检测试剂盒(ENZ-51002)和 Cyto-ID® 检测试剂盒(ENZ-51031)不能配合使用,因为细胞凋亡和自噬检
A:测的染料都发绿色荧光。这两个试剂盒可以平行使用。比如,用十字孢碱(Staurosporine)处理细胞,一部分样品用 GFP-CertifiedTM 细胞
A:凋亡/坏死检测试剂盒检测,一部分样品用 Cyto-ID® 检测试剂盒检测。
Q:Cyto-ID®自噬检测试剂盒(ENZ-51031)的 Cyto-ID®自噬检测试剂能否与 ProteoStat®蛋白聚集检测(ENZ-51023)的 ProteoStat®
A:检测试剂联合使用?
A:Cyto-ID®绿色自噬检测试剂与 ProteoStat®检测试剂发的荧光颜色不同,他们可用于同一实验,客户需要优化实验流程。
Q:Cyto-ID®自噬检测试剂的原理是什么?
A:染料是申请专利的。该染料是阳离子两性示踪剂(CAT)染料,跟很多阳离子化合物一样可以快速进入细胞。染料穿过细胞膜双分子层后被动
A:扩散,不需要蛋白结合或者转运子活性。可滴定部分的筛选使的染料不会再溶酶体聚集,能够标记自噬通道相关的液泡。另外,染料的发射光
A:密度增强后可以标记自噬液泡相关片层膜结构。我们可以提供染料染自噬液泡的相关数据。诱导自噬溶酶体,比如用氯喹或者baflimyocin 处
A:理后,会导致荧光变亮(250~300%)。雷帕霉素诱导自噬后能够用3-MA 抑制。在EBSS 中氨基酸缺乏会导致1 小时后在自噬液泡中染料的
A:积累,这种积累是可逆的(补充营养后即可恢复)。我们有一系列用于研究自噬的化合物(Screen-Well®Autophagy library)
Q:与单丹磺酰尸胺(MDC)相比,Cyto-ID®自噬检测试剂有哪些优势?
A:MDC 需要 365 nm UV 荧光照明,与通常流式配置的 488 nm 激发源不兼容。Cyto-ID®自噬染料是 488 nm 激发波长,绿色的发射荧光,可
A:以高亮自噬通道不同的液泡成分。需要注意的是,与 lysomotrophic 染料不同,MDC、LysoTrackerTMRed、吖啶橙主要是染溶酶体的,
A:Cyto-ID®自噬染料只能染一点点溶酶体,主要是染自噬溶酶体和早期自噬部分的选择标记物。
Q:与 GFP-LC3 转染细胞相比,Cyto-ID®自噬检测试剂盒(ENZ-51031)的优势是什么?
A:Cyto-ID®检测试剂盒(ENZ-51031)的优势在于不用转染细胞。转染很短暂,不同实验需要再购买相关试剂。由于细胞过表达,会导致
A:GFP-LC3 聚集,结果呈假阳性。转染效率低于100%,有些细胞不会表达必要的 GFP 组件。该试剂盒检测的自噬,细胞群的一致性会更好。
A:不需要每个细胞系都进行转染。也可以标记原代细胞。原代细胞不容易进行转染。
Q:有哪些细胞系或者原代细胞可用 Cyto-ID®自噬检测试剂?
A:用该试剂盒见检测过的代表性的细胞和细胞系包括肝细胞、SK-N-SH 神经瘤细胞、CHO 细胞、骨肉瘤来源细胞、黑素留细胞、乳腺癌细胞、
A:宫颈癌细胞、卵巢癌细胞、B 淋巴瘤细胞、结肠癌细胞、HepG 细胞、Jurkat T细胞、牛大动脉内皮细胞(BAEC)。
Q:Cyto-ID®自噬检测试剂能否与其他染料配合使用,区分细胞核内体和自噬内涵体?
A:Cyto-ID®红色长期示踪剂染料(ENZ-51037)能够染细胞质膜,通过细胞内吞存在于细胞中。Cyto-ID®红色染料与 Cyto-ID®自噬检测试剂
A:能够高亮异体吞噬 vs 自噬。也可以 Cyto-ID®自噬检测试剂与Lyso-ID®红色染料或者LysoTrackerTM 红色染料进行活细胞染色,荧光显微镜
A:观察。
Q:Cyto-ID®自噬检测试剂的稳定性如何?
A:荧光染料会发生光褪色,但是这种染料比荧光素更稳定。按照操作手册出来荧光染料。
Q:Cyto-ID®自噬检测试剂盒染色后是否可固定细胞?
A:在操作手册中提供了固定细胞的流程。不推荐用表面活性剂给细胞打孔,定位的荧光染料丢失。
Q:活细胞检测时,荧光信号强度可维持多长时间?
A:细胞诱导后发生自噬,在分析前染色。诱导时间少于 1 小时或者诱导几天,诱导时间取决于自噬诱导剂。我们没有在活细胞上进行长时间的染
A:色,有客户发现可以至少染色 24 小时。
参考文献
1. |
A comparison of strategies for immortalizing mouse embryonic fibroblasts: M.M. St. Amad, et al.; J. Biol. Methods 3, e41 (2016), Application(s): Detected autophagy induction in SV40 transformed versus serially passed MEFs, 全文 |
2. |
Astemizole-Histamine induces Beclin-1-independent autophagy by targeting p53-dependent crosstalk between autophagy and apoptosis: R. Jakhar, et al.; Cancer Lett. 372, 89 (2016), Application(s): Flow cytometry analysis, 摘要; |
3. |
Atg5 Is Essential for the Development and Survival of Innate Lymphocytes: T.E. O'Sullivan, et al.; Cell Rep. 15, 1910 (2016), Application(s): Liver lymphocytes were harvested and stained with cell surface antibodies and then incubated with 1:400 Cyto-ID Autophagy Detection Reagent, 摘要; 全文 |
4. |
Autophagy-related gene 5 and Wnt5 signaling pathway requires differentiation of embryonic stem cells into odontoblast-like cells: N. Ozeki, et al.; Exp. Cell Res. 341, 92 (2016), Application(s): Autophagy flux, 摘要; |
5. |
DHA-induced stress response in human colon cancer cells-focus on oxidative stress and autophagy: K. Pettersen, et al.; Free Radic. Biol. Med. 90, 158 (2016), Application(s):Autophagy determined by flow cytometry, 摘要; |
6. |
Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells: S. Jiang, et al.; Phytomedicine 23, 243 (2016),Application(s): Confocal immunofluorescence, 摘要; |
7. |
Efavirenz causes oxidative stress, endoplasmic reticulum stress, and autophagy in endothelial cells: M. Weiss, et al.; Cardiovasc. Toxicol. 16, 90 (2016), 摘要; |
8. |
MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells: M.J. Nyhan, et al.; BMC Cancer 16, 101 (2016), Application(s): Assay used to stain live cells, 摘要; 全文 |
9. |
(Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose: C. Li, et al.; Am. J. Physiol. Endocrinol. Metab. 309, E302 (2015), Application(s):Confocal microscopy using mouse podocytes, 摘要; |
10. |
A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications: S. Guo, et al.; Autophagy11, 560 (2015), Application(s): Fluorescent detection, Microplate Reader , 摘要; 全文 |
11. |
A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis: R. Liang, et al.; PLoS Genet. 11, e1005526 (2015), Application(s):Autophagy flux measured by flow cytometry , 摘要; 全文 |
12. |
ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells: R.K. Balvers, et al.; J. Transl. Med. 13, 74 (2015),Application(s): Assay, 摘要; 全文 |
13. |
Activation of autophagy in response to nanosecond pulsed electric field exposure: J.C. Ullery, et al.; Biochem. Biophys. Res. Commun. 458, 411 (2015), Application(s):Fluorescence microscopy using U937 monocyte and CHO-K1 cell lines, 摘要; |
14. |
Aflatoxin biosynthesis is a novel source of reactive oxygen species-a potential redox signal to initiate resistance to oxidative stress?: L.V. Roze, et al.; Toxins (Basel). 7, 1411 (2015),Application(s): Assay, 摘要; 全文 |
15. |
Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells: F. Wang, et al.; Drug Des. Devel. Ther. 9, 575 (2015), Application(s): Flow cytometry using PANC-1 and BxPC-3 pancreatic cancer cell lines, 摘要; 全文 |
16. |
Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer: Y.H. Ding, et al.; Drug Des. Devel. Ther. 9, 425 (2015), Application(s): Flow cytometry using SKOV3 and OVCAR-4 ovarian cancer cell lines, 摘要; 全文 |
17. |
Andrographolide Analogue Induces Apoptosis and Autophagy Mediated Cell Death in U937 Cells by Inhibition of PI3K/Akt/mTOR Pathway: D. Kumar, et al.; PLoS One 10, e0139657 (2015), Application(s): Flow cytometric analysis of Cyto-ID Green Detection Reagent , 摘要; 全文 |
18. |
Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells: F. Lang, et al.; PLoS One 10, e0129196 (2015),Application(s): Live Cell Imaging, 摘要; 全文 |
19. |
Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling: M.R. Akl, et al.; Mar. Drugs 13, 288 (2015), Application(s): Flow cytometry using BT-474 breast cancer cell line, 摘要; 全文 |
20. |
Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy: C.K. Domigan, et al.; J. Cell. Sci. 128, 2236 (2015), 摘要; |
21. |
Autophagy is activated in systemic lupus erythematosus and required for plasmablast development: A.J. Clarke, et al.; Ann. Rheum. Dis. 74, 912 (2015), 摘要; 全文 |
22. |
Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia: A.S. Watson, et al.; Cell Death Discov. 1, 15008 (2015), Application(s): CytoID assay in human and mouse HSCs, 摘要; 全文 |
23. |
Baicalin inhibits autophagy induced by influenza A virus H3N2: H.Y. Zhu, et al.; Antiviral Res. 113, 62 (2015), Application(s): Fluorescence microscopy using A549 human lung cancer cell line, 摘要; |
24. |
Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells: Y.Y. Wang, et al.; Drug Des. Devel. Ther. 9, 993 (2015), Application(s): Flow Cytometry, 摘要; 全文 |
25. |
Cell-penetrating peptide derived from human eosinophil cationic protein inhibits mite allergen Der p 2 induced inflammasome activation: S.J. Yu, et al.; PLoS One 10, e0121393 (2015), Application(s): Flow cytometry of THP-1 leukemia cell line, 摘要; 全文 |
26. |
Chemoproteomics Reveals Novel Protein and Lipid Kinase Targets of Clinical CDK4/6 Inhibitors in Lung Cancer: N.J. Sumi, et al.; ACS Chem. Biol. 10, 2680 (2015),Application(s): Quantification of autophagosomes, 摘要; |
27. |
Circulating hemocytes from larvae of the Japanese rhinoceros beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the cellular immune response to microorganisms: S. Hwang, et al.; PLoS One 10, e0128519 (2015), Application(s):Fluorescence microscopy using hemocytes from Japanese rhinoceros beetle Allomyrina dichotoma larvae, 摘要; 全文 |
28. |
Citreoviridin induces ROS-dependent autophagic cell death in human liver HepG2 cells: Y.N. Liu, et al.; Toxicon. 95, 30 (2015), Application(s): Fluorescence microscopy using HepG2 cell line, 摘要; |
29. |
Clozapine induces autophagic cell death in non-small cell lung cancer cells: Y.C. Yin, et al.; Cell. Physiol. Biochem. 35, 945 (2015), 摘要; |
30. |
Coffee and caffeine potentiate the antiamyloidogenic activity of melatonin via inhibition of Aβ oligomerization and modulation of the Tau-mediated pathway in N2a/APP cells: L.F. Zhang, et al.; Drug Des. Devel. Ther. 9, 241 (2015), Application(s): Flow Cytometry,摘要; 全文 |
31. |
Combination of the mTOR inhibitor RAD001 with temozolomide and radiation effectively inhibits the growth of glioblastoma cells in culture: H. Burckel, et al.; Oncol. Rep. 33, 471 (2015), 摘要; |
32. |
Danusertib Induces Apoptosis, Cell Cycle Arrest, and Autophagy but Inhibits Epithelial to Mesenchymal Transition Involving PI3K/Akt/mTOR Signaling Pathway in Human Ovarian Cancer Cells: D. Zi, et al.; Int. J. Mol. Sci. 16, 27228 (2015), Application(s): Confocal fluorescence microscopy, 摘要; 全文 |
33. |
Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells: C.X. Yuan, et al.; Drug Des. Devel. Ther. 9, 1293 (2015), Application(s): Flow cytometry using AGS and NCI-N78 gastric cancer cell lines, 摘要; 全文 |
34. |
Defective autophagy in vascular smooth muscle cells alters contractility and Ca²⁺ homeostasis in mice: C.F. Michiels, et al.; Am. J. Physiol. Heart Circ. Physiol. 308, H557 (2015), 摘要; |
35. |
Effects of cyclodextrins on GM1‐gangliosides in fibroblasts from GM1‐gangliosidosis patients: Y. Maeda, et al.; J. Pharm. Pharmacol. 67, 1133 (2015), 摘要; |
36. |
Endurance exercise training induces fat depot-specific differences in basal autophagic activity: G. Tanaka, et al.; Biochem. Biophys. Res. Commun. 466, 512 (2015),Application(s): Detect the formation of autophagosomes, 摘要; |
37. |
Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis: C.M. Xie, et al.; J. Cell. Biol. 209, 721 (2015), 摘要; |
38. |
Evaluation of Antitumor Effects of Folate-Conjugated Methyl-β-cyclodextrin in Melanoma: K. Motoyama, et al.; Biol. Pharm. Bull. 38, 374 (2015), Application(s): Fluorescence Microscopy, 摘要; 全文 |
39. |
Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy: A.C. Laurent, et al.; Cardiovasc. Res. 105, 55 (2015), Application(s):Fluorescence microscopy using rat neonatal ventricular myocytes, 摘要; |
40. |
Glutathione-S-transferase omega 1 (GSTO1-1) acts as mediator of signaling pathways involved in aflatoxin B1-induced apoptosis-autophagy crosstalk in macrophages: S. Paul, et al.; Free Radic. Biol. Med. 89, 1218 (2015), Application(s): Determination of autophagy with immunocytochemistry , 摘要; |
41. |
GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells: I.L. Hsin, et al.; Mol. Pharm. 12, 1534 (2015), 摘要; |
42. |
Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells: Z.W. Zhou, et al.; Drug Des. Devel. Ther. 9, 1511 (2015), Application(s): Assay, 摘要; 全文 |
43. |
Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation: N. Orfali, et al.; Exp. Hematol. 43, 781 (2015), Application(s): Flow cytometry analysis of NB4 and HL60 promyelocytic leukemia cell lines, 摘要; |
44. |
Inhibition of Autophagy Potentiated the Antitumor Effect of Nedaplatin in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells: Z. Liu, et al. ; PLoS One 10, e0135236 (2015),Application(s): Cell culture, 摘要; 全文 |
45. |
Inhibition of mitotic Aurora kinase A by alisertib induces apoptosis and autophagy of human gastric cancer AGS and NCI-N78 cells: C.X. Yuan, et al.; Drug Des. Devel. Ther. 9, 487 (2015), Application(s): Flow cytometry using AGS and NCI-N78 gastric cancer cell lines, 摘要; 全文 |
46. |
Interferon Regulatory Factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate: J.L. Schwartz-Roberts, et al.; Cancer Res.75, 1046 (2015), 摘要; |
47. |
Interplay of Oxidative Stress and Autophagy in PAMAM Dendrimers-Induced Neuronal Cell Death : Y. Li, et al.; Theranostics 5, 1363 (2015), Application(s): Confocal fluorescence assay, 摘要; 全文 |
48. |
Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation: B. Pei, et al.; J. Immunol. 194, 5872 (2015), 摘要; |
49. |
Involvement of fish signal transducer and activator of transcription 3 (STAT3) in nodavirus infection induced cell death: Y. Huang, et al.; Fish Shellfish Immunol. 43, 241 (2015),Application(s): Fluorescence microscopy of Grouper (fish) brain cells, 摘要; |
50. |
Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma?: H. Wu, et al.; Biomaterials 62, 47 (2015), Application(s): Fluorescence microscopy using U251 human glioma cell line, 摘要; |
51. |
Kaposi's sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1: O. Gjyshi, et al.; J. Virol. 89, 2268 (2015), 摘要; |
52. |
KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models: I. Riz, et al.; Oncotarget 6, 17814 (2015), Application(s):FACS, 摘要; 全文 |
53. |
Lithium modulates autophagy in esophageal and colorectal cancer cells and enhances the efficacy of therapeutic agents in vitro and in vivo: T.R. O'Donovan, et al.; PLoS One 10, e0134676 (2015), Application(s): Flow cytometry analysis using human esophageal and murine colon cancer cell lines, 摘要; 全文 |
54. |
Methicillin-Resistant Staphylococcus aureus Adaptation to Human Keratinocytes: G. Soong, et al.; MBio. 6, e00289-15 (2015), Application(s): Assay, 摘要; 全文 |
55. |
Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy: T.P. Miettinen, et al.; Cell Rep. 13, 2610 (2015), Application(s): Flow cytometry analysis of autophagy using Jurkat, U2OS, Kc167 and HUVEC cells, 摘要; |
56. |
MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib: S. Jagannathan, et al.; Leukemia 29, 727 (2015), Application(s): Detection of autophagy by fluorescence microscopy in multiple myeloma cell lines, 摘要; 全文 |
57. |
Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma: M.A. Abdel Malek, et al.; Oncotarget 6, 3098 (2015), Application(s): Confocal Microscopy, 摘要; 全文 |
58. |
Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor: H. Tindwa, et al.; Dev. Comp. Immunol. 51, 88 (2015), Application(s): Fluorescence microscopy using hemocytes from Tenebrio molitor larvae, 摘要; |
59. |
Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress: I. Khan, et al.; Sci. Rep. 5, 10581 (2015), Application(s): Fluorescence microscopy autophagy assay, 摘要; 全文 |
60. |
N-Myc and STAT Interactor regulates autophagy and chemosensitivity in breast cancer cells: B.J. Metge, et al.; Sci. Rep. 5, 11995 (2015), Application(s): Fluorescent detection,摘要; 全文 |
61. |
Novel autophagy inducers lentztrehaloses A, B and C: S.I. Wada, et al.; J. Antibiot. (Tokyo)68, 521 (2015), Application(s): Fluorescence microscopy using Mewo melanoma and OVK18 ovarian cancer cell lines, 摘要; |
62. |
Novel small-molecule SIRT1 inhibitors induce cell death in adult T-cell leukaemia cells: T. Kozako, et al.; Sci. Rep. 5, 11345 (2015), Application(s): Flow cytometry using a variety of cancer cell lines, 摘要; 全文 |
63. |
Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study: N. Niu, et al. ; Drug Des. Devel. Ther. 9, 4441 (2015),Application(s): Autophagy of human macrophages by flow cytometry, 摘要; |
64. |
Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells: N. Sugimori, et al.; PLoS One 10, e0120709 (2015), Application(s): Flow cytometry using HL60 leukemia cell line, 摘要; 全文 |
65. |
Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells: S.T. Pan, et al.; Drug Des. Devel. Ther. 9, 1601 (2015), Application(s): Assay, 摘要; 全文 |
66. |
Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway: N.K. Niu, et al.; Drug Des. Devel. Ther. 9, 1555 (2015), Application(s): Assay,摘要; 全文 |
67. |
Reduced FoxO3a expression causes low autophagy in idiopathic pulmonary fibrosis fibroblasts on collagen matrix: J. Im, et al.; Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L552 (2015), 摘要; |
68. |
S-Adenosyl-L-methionine-competitive inhibitors of the histone methyltransferase EZH2 induce autophagy and enhance drug sensitivity in cancer cells: T.P. Liu, et al.; Anticancer Drugs 26, 139 (2015), Application(s): Fluorescence microscopy using MDA-MB-231 breast cancer cell line, 摘要; 全文 |
69. |
Schisandrin B inhibits cell growth and induces cellular apoptosis and autophagy in mouse hepatocytes and macrophages: implications for its hepatotoxicity: Y. Zhang, et al.; Drug Des. Devel. Ther. 9, 2001 (2015), Application(s): Flow cytometry using AML-12 hepatocyte and RAW 264.7 leukemia cell lines, 摘要; 全文 |
70. |
Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy: Q. Tan, et al.; Cancer Sci. 106, 1023 (2015), 摘要; |
71. |
The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells: W.B. Fang, et al.; Breast Cancer Res. Treat. 150, 309 (2015), 摘要; |
72. |
The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells: J.P. Li, et al.; Drug Des. Devel. Ther. 9, 1627 (2015),Application(s): Assay, 摘要; 全文 |
73. |
The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells: J.P. Li, et al.; Drug Des. Devel. Ther. 9, 1027 (2015), Application(s): Assay, 摘要; 全文 |
74. |
The role of autophagy in the cytotoxicity induced by recombinant human arginase in laryngeal squamous cell carcinoma: C. Lin, et al.; Appl. Microbiol. Biotechnol. 99, 8487 (2015), 摘要; |
75. |
A Novel CXCR3-B Chemokine Receptor-induced Growth-inhibitory Signal in Cancer Cells Is Mediated through the Regulation of Bach-1 Protein and Nrf2 Protein Nuclear Translocation : M. Balan & S. Pal; J. Biol. Chem. 289, 3126 (2014), Application(s): Monitor autophagy in MCF-7 and T47D breast cancer cells by flow cytometry and fluorescence microscopy, 摘要; |
76. |
Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis: K.Y. Huang, et al.; Biochim. Biophys. Acta. 1840, 53 (2014), 摘要; |
77. |
Autophagy in the brain of neonates following hypoxia-ischemia shows sex-and region-specific effects: S.N. Weis, et al.; Neuroscience 256, 201 (2014), 摘要; |
78. |
Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium: L.C. Koay, et al.; Am. J. Physiol. Gastrointest. Liver Physiol. 307, G140 (2014),Application(s): Detection of autophagy in human colonic epithelial cell line Caco-2 by Confocal imaging, 摘要; 全文 |
79. |
Caveolin-1 Is a Critical Determinant of Autophagy, Metabolic Switching, and Oxidative Stress in Vascular Endothelium: T. Shiroto, et al.; PLoS One 9, e87871 (2014), 摘要;全文 |
80. |
Connective tissue diseases: How do autoreactive B cells survive in SLE-autophagy?: N.J. Bernard; Nat. Rev. Rheumatol. 10, 128 (2014), (Review), 摘要; |
81. |
Defective Autophagosome Trafficking Contributes to Impaired Autophagic Flux in Coronary Arterial Myocytes Lacking CD38 Gene: Y. Zhang, et al.; Cardiovasc. Res. 102, 68 (2014),摘要; |
82. |
Defects in mitochondrial clearance predispose human monocytes to interleukin-1β hyper-secretion: R. van der Burgh, et al.; J. Biol. Chem. 289, 5000 (2014), 摘要; 全文 |
83. |
Early biomarkers of response to carfilzomib in multiple myeloma (MM): Modulation of CXCR4 and induction of autophagy: M. Bhutani, et al.; J. Clin. Oncol. 32, e19572 (2014),Application(s): Quantification of autophagy in malignant plasma cells from bone marrow aspirates by flow cytometry with the Cyto-ID autophagy detection kit, |
84. |
Enhancement of dynein-mediated autophagosome trafficking and autophagy maturation by ROS in mouse coronary arterial myocytes: M. Xu, et al.; J. Cell. Mol. Med. 18, 2165 (2014), 摘要; 全文 |
85. |
Flow Cytometric Analysis of Autophagic Activity with Cyto-ID Staining in Primary Cells: M. Stankov, et al.; Bio-Protocol (2014), Application(s): FC in primary BMDCs, 全文 |
86. |
High-Content Assays for Hepatotoxicity Using Induced Pluripotent Stem Cell-Derived Cells: O. Sirenko, et al.; Assay Drug Dev. Technol. 12, 43 (2014), 摘要; 全文 |
87. |
Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy: M.V. Stankov, et al.; Leukemia 28, 577 (2014), 摘要; |
88. |
Histone deacetylase inhibitors potentiate VSV oncolysis in prostate cancer cells by modulating NF-κB dependent autophagy: L. Shulak, et al.; J. Virol. 88, 2927 (2014),摘要; |
89. |
In vitro and in vivo characterization of porcine acellular dermal matrix for gingival augmentation procedures: A.M. Pabst, et al.; J. Periodontal. Res. 49, 371 (2014), 摘要; |
90. |
Inhibition of Autophagic Flux by Salinomycin Results in Anti-Cancer Effect in Hepatocellular Carcinoma Cells: J. Klose, et al.; PLoS One 9, e95970 (2014),Application(s): Autophagy detection in human hepatocellular carcinoma , 摘要; 全文 |
91. |
Inhibition of stress induced premature senescence in presenilin-1 mutated cells with water soluble Coenzyme Q10: D. Ma, et al.; Mitochondrion 17C, 106 (2014), Application(s):Autophagic vacuoles in Alzheimer's Disease fibroblasts detected with CytoID® Green Autophagy Detection kit, 摘要; |
92. |
Involvement of autophagy in recombinant human arginase-induced cell apoptosis and growth inhibition of malignant melanoma cells: Z. Wang, et al.; Appl. Microbiol. Biotechnol.98, 2485 (2014), 摘要; |
93. |
MiR-216a: a link between endothelial dysfunction and autophagy: R. Menghini, et al.; Cell Death Dis. 5, e1029 (2014), 摘要; |
94. |
Novel estradiol analogue induces apoptosis and autophagy in esophageal carcinoma cells: E. Wolmarans, et al.; Cell. Mol. Biol. Lett. 19 , 98 (2014), Application(s): Autophagy detection in esophageal carcinoma SNO cell , 摘要; |
95. |
Novel sorafenib-based structural analogues: in-vitro anticancer evaluation of t-MTUCB and t-AUCMB: A.T. Wecksler, et al.; Anticancer Drugs 25, 433 (2014), 摘要; |
96. |
Photodynamic therapy with the novel photosensitizer chlorophyllin f induces apoptosis and autophagy in human bladder cancer cells: D. Lihuan, et al.; Lasers Surg. Med. 46, 319 (2014), 摘要; |
97. |
Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells: Y.C.Li, et al.; Cancer Lett. 344, 239 (2014), 摘要; |
98. |
Potential of adenovirus-mediated REIC/Dkk-3 gene therapy for use in the treatment of pancreatic cancer: D. Uchida, et al.; J. Gastroenterol. Hepatol. 29, 973 (2014), 摘要; |
99. |
Sirt1 modulates endoplasmic reticulum stress-induced autophagy in heart: A. Guilbert, et al.; Cardiovasc. Res. 103 (suppl 1), S13 (2014), Application(s): Evaluation of Autophagy in H9c2 cells, rat cardiomyoblasts by flow cytometry, 全文 |
100. |
STAT3 down regulates LC3 to inhibit autophagy and pancreatic cancer cell growth: J. Gong, et al.; Oncotarget 5, 2529 (2014), Application(s): Autophagic vacuole formation was detected by microscopy and autophagosome formation was determined by flow cytometry in human pancreatic cancer cells Capan-2, 摘要; 全文 |
101. |
T-Cell Autophagy Deficiency Increases Mortality and Suppresses Immune Responses after Sepsis: C.W. Lin, et al.; PLoS One 9, e102066 (2014), Application(s): Quantification of autophagosomes and autolysosomes staining in CD4+ and CD8+ cell population by flow cytometry , 摘要; 全文 |
102. |
Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition: A. Brüning, et al.; Exp. Cell Res. 320, 281 (2014), 摘要; |
103. |
The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells: K. Rothe, et al.; Blood 123, 3622 (2014), Application(s): Monitor autophagy flux in hematopoietic stem/progenitor cells, 摘要; |
104. |
Androgen deprivation and androgen receptor competition by bicalutamide induce autophagy of hormone-resistant prostate cancer cells and confer resistance to apoptosis: B. Boutin, et al.; Prostate 73, 1090 (2013), Application(s): Measurement of autophagic flux in prostate cancer cells, 摘要; |
105. |
Arenobufagin, a natural bufadienolide from toad vonem, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway: D.M. Zhang, et al.; Carcinogenesis 34, 1331 (2013), Application(s): Autophagy detection in hepatocellular carcinoma, 摘要; |
106. |
Autophagy Plays a Critical Role in ChLym-1-Induced Cytotoxicity of Non-Hodgkin's Lymphoma Cells: J. Fan, et al.; PLoS One. 8, e72478 (2013), 摘要; 全文 |
107. |
BCL-2 inhibitors sensitize therapy-resistant chronic lymphocytic leukemia cells to VSV oncolysis: S. Samuel, et al.; Mol. Ther. 21, 1413 (2013), 摘要; |
108. |
Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells: H. Bugaut, et al.; PLoS One 8, e65181 (2013),Application(s): Measurement of autophagy by flow cytometry and fluorescence microscopy, 摘要; 全文 |
109. |
Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress: K. Suzuki, et al.; Neuro. Oncol. 15, 1186 (2013), 摘要; |
110. |
Chloroquine Engages the Immune System to Eradicate Irradiated Breast Tumors in Mice: J.A. Ratikan, et al.; Int. J. Radiat. Oncol. Biol. Phys. 87, 761 (2013), 摘要; |
111. |
Dietary Resveratrol Prevents Development of High-Grade Prostatic Intraepithelial Neoplastic Lesions: Involvement of SIRT1/S6K Axis: G. Li, et al.; Cancer Prev. Res 6, 27 (2013), Application(s): Effects of Resveratrol on prostate tumorigenesis, 摘要; |
112. |
Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes: Y.M. Wei, et al.; Cell. Physiol. Biochem. 31, 925 (2013), 摘要; 全文 |
113. |
GX15-070 (obatoclax) induces apoptosis and inhibits cathepsin D and L mediated autophagosomal lysis in antiestrogen resistant breast cancer cells: J.L. Schwartz-Roberts, et al.; Mol. Cancer Ther. 12, 448 (2013), Application(s): Autophagy detection in breast cancer cells, 摘要; |
114. |
Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: A possible mechanism for therapeutic modulation of T cells: J. van Loodregt, et al.; J. Allergy Clin. Immunol. 131, 1443 (2013), Application(s): Detection of autophagy in CD4+ T cells and PBMC by flow cytometry , 摘要; 全文 |
115. |
Interactions between autophagic and endo-lysosomal markers in endothelial cells: C.L. Oeste, et al.; Histochem. Cell. Biol. 139, 659 (2013), 摘要; |
116. |
Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-β-cyclodextrin: R. Onodera, et al.; Int. J. Pharm. 452, 116 (2013), Application(s):Measurement of autophagy by fluorescence microscopy, 摘要; |
117. |
ISG15 deregulates autophagy in genotoxin-treated ataxia telangiectasia cells: S.D. Desai, et al.; J. Biol. Chem. 288, 2388 (2013), Application(s): Fluorescence microscopy using Ataxia Telangiectasia cells, 摘要; 全文 |
118. |
Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: Implications for glaucoma pathogenesis: K. Porter, et al.; Autophagy 9, 581 (2013), Application(s): Autophagy detection by flow cytometry in porcine TM cells,摘要; 全文 |
119. |
Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation: A. Brüning; Mol. Oncol. 7, 1012 (2013), 摘要; |
120. |
Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-Hodgkin's lymphoma cells: X. Zeng, et al.; Cell Death Dis. 4, e840 (2013), 摘要;全文 |
121. |
Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes: M. Xu, et al.; Biochim. Biophys. Acta. 1833, 3228 (2013),摘要; |
122. |
Renal cancer-selective Englerin A induces multiple mechanisms of cell death and autophagy: R.T. Williams, et al.; J. Exp. Clin. Cancer Res. 32, 57 (2013), Application(s):Flow cytometry and immunofluorescence of a human kidney carcinoma cell line, 摘要;全文 |
123. |
Saxifragifolin D induces the interplay between apoptosis and autophagy in breast cancer cells through ROS-dependent endoplasmic reticulum stress: J.M. Shi, et al.; Biochem. Pharmacol. 85, 913 (2013), Application(s): Autophagy detection by flow cytometry in breast cancer cells, 摘要; |
124. |
Suppression of autophagy enhanced growth inhibition and apoptosis of interferon-β in human glioma cells: Y. Li, et al.; Mol. Neurobiol. 47, 1000 (2013), 摘要; |
125. |
Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage: A.V. Knizhnik, et al.; PLoS One 8, e55665 (2013), Application(s): Autophagy detection by flow cytometry in glioma cells, 摘要; 全文 |
126. |
The effect of Zhangfei on the unfolded protein response and growth of cells derived from canine and human osteosarcomas: T. Bergeron, et al.; Vet. Comp. Oncol. 11, 140 (2013),Application(s): Detection of autophagy in human and canine osteosarcoma, 摘要; |
127. |
The mTOR inhibitor RAD001 potentiates autophagic cell death induced by temozolomide in a glioblastoma cell line: E. Josset, et al.; Anticancer Res. 33, 1845 (2013), 摘要; |
128. |
Therapeutic Combination of Nanoliposomal Safingol and Nanoliposomal Ceramide for Acute Myeloid Leukemia: T.J. Brown, et al.; J. Leuk. 1, 110 (2013), Application(s):Detection of autophagy by flow cytometry in Human HL-60 , HL-60/VCR, and murine C1498 cells, 全文 |
129. |
Type I interferons induce autophagy in certain human cancer cell lines: H. Schmeisser, et al.; Autophagy 9, 683 (2013), Application(s): Autophagy detection in type I interferon-treated human cancer cell lines, 摘要; |
130. |
A novel image-based cytometry method for autophagy detection in living cells: L.L. Chan, et al.; Autophagy 8, 1371 (2012), 摘要; 全文 |
131. |
Apoptosis and autophagy have opposite roles on imatinib-induced K562 leukemia cell senescence: C. Drullion, et al.; Cell Death Dis. 3, e373 (2012), Application(s): Flow cytometry of human CML cells treated with Imatinib, 摘要; 全文 |
132. |
Counteracting autophagy overcomes resistance to everolimus in mantle cell lymphoma: L. Rosich, et al.; Clin. Cancer Res. 18, 5278 (2012), 摘要; 全文 |
133. |
Heme Oxygenase-1 Promotes Survival of Renal Cancer Cells through Modulation of Apoptosis-and Autophagy-regulating Molecules: P. Banerjee, et al.; J. Biol. Chem. 287, 4962 (2012), Application(s): Detection of autophagy in human renal cancer cells, 摘要; |
134. |
Inhibition of monocarboxylate transporter 2 induces senescence-associated mitochondrial dysfunction and suppresses progression of colorectal malignancies in vivo: I. Lee, et al.; Mol. Cancer Ther. 11, 2342 (2012), 摘要; 全文 |
135. |
Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF: T.W. Bodnarchuk, et al.; J. Neurooncol. 109, 485 (2012),Application(s): Detection of autophagy in medulloblastoma cells, 摘要; |
136. |
Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic: D.M. Arduíno, et al.; Hum. Mol. Genet. 21, 4680 (2012), 摘要; 全文 |
137. |
Proteasome inhibition by quercetin triggers macroautophagy and blocks mTor activity: A.K. Klappan, et al.; Histochem. Cell Biol. 137, 25 (2012), 摘要; |
138. |
Reovirus as a viable therapeutic option for the treatment of multiple myeloma: C.M. Thirukkumaran, et al.; Clin. Cancer Res. 18, 4962 (2012), Application(s): Detection of autophagy in human myeloma cell lines and ex vivo tumor specimens, 摘要; |
139. |
Src inhibition with saracatinib reverses fulvestrant resistance in ER-positive ovarian cancer models in vitro and in vivo: F.A. Simpkins, et al.; Clin. Cancer Res. 18, 5911 (2012),Application(s): Detection of autophagy in human ovarian cancer cells and xenografts,摘要; |
140. |
FoxM1 knockdown sensitizes human cancer cells to proteasome inhibitor-induced apoptosis but not to autophagy: B. Pandit, et al.; Cell Cycle 10, 3269 (2011), Application(s):Flow cytometry using human cancer cells, 摘要; 全文 |
141. |
Monitoring of autophagy in Chinese hamster ovary cells using flow cytometry: J.S. Lee, et al.; Methods 56(3), 375 (2011), 摘要; |
143. |
Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4: H.M. Warenius, et al.; Mol. Cancer 10, 72 (2011),摘要; |
144. |
Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells: H. Kauntz, et al.; Apoptosis16, 1042 (2011), 摘要; |
产品编号 | 产品名称 | 产品规格 | 产品等级 | 备注 |
ENZ-51031-K200 | Cyto-ID® Autophagy detection kit CYTO-ID®自噬检测试剂盒 | 200 tests | – | – |
ENZ-51031-0050 | Cyto-ID® Autophagy detection kit CYTO-ID®自噬检测试剂盒 | 50 tests | – | – |