SCREEN-WELL® Autophagy library Screen-Well 自噬 化合物库 品牌:Enzo


SCREEN-WELL® Autophagy library

Screen-Well 自噬 化合物库

品牌:Enzo
CAS No.:
储存条件:-80℃
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

BML-2837-0500

1 Library 咨询


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

日本同仁化学线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒| DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载

选择规格:
1set

现货 

 
线粒体自噬检测

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

试剂盒内含

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒| DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载

选择规格:
1set

现货 

 
线粒体自噬检测

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

试剂盒内含

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学线粒体自噬—Mitophagy Detection Kit货号:MD01| DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载

选择规格:
1set

现货

 
线粒体自噬检测

线粒体自噬—Mitophagy Detection Kit货号:MD01

线粒体自噬—Mitophagy Detection Kit货号:MD01

活动进行中
试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

活动进行中

订购满5000元,200元礼品等你拿

线粒体自噬大揭秘丨从实验思路到检测指标  PDF下

 

关联指标干货参考(点击查看) 检测指标(点击查看)
线粒体自噬详述 Mitophagy Detection Kit(本产品)
多细胞器共染&线粒体动力学 MitoBright IM Red for Immunostaining
MitoBright LT Green/Red/Deep Red
线粒体功能 JC-1 、MT-1
CCK-L、ADP/ATP比率检测
Oxygen Consumption Rate(OCR)
mtSOX
ROS Assay Kit -Highly Sensitive DCFH-DA-
ROS Assay Kit -Photo-oxidation Resistant DCFH-DA-
Ca2+从内质网到线粒体 Fura 2-AM
Fluo 4-AM
Rhod 2-AM
线粒体自噬-溶酶体功能 Lysosomal Acidic pH Detection Kit
Lysosomal Acidic pH Detection Kit-Green/Deep Red
线粒体自噬-脂质定位&定量 Lipi-Blue/Green/Red/Deep Red
Lipid Droplet Assay Kit-Blue/Deep Red
细胞死亡 Cell Counting Kit-8
Cytotoxicity LDH Assay Kit-WST
Annexin V, FITC Apoptosis Detection Kit

*点击即可跳转至详情页 

试剂盒内含

线粒体自噬—Mitophagy Detection Kit货号:MD01

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

线粒体自噬—Mitophagy Detection Kit货号:MD01

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

线粒体自噬—Mitophagy Detection Kit货号:MD01

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

线粒体自噬—Mitophagy Detection Kit货号:MD01

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

线粒体自噬—Mitophagy Detection Kit货号:MD01

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

线粒体自噬—Mitophagy Detection Kit货号:MD01

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸| DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

线粒体

线粒体(mitochondrion) 是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。最近越老越多的研究发现线粒体在细胞中的作用远远不止”细胞能量站”。它们参与了各种细胞功能调控,与很多人类疾病存在着莫大的联系。包括细胞信号传导、代谢、自噬、衰老和肿瘤发生都与线粒体的质量和活性相关
线粒体染色
线粒体损伤
线粒体自噬
线粒体氧化应激
线粒体呼吸

品名货号用途

MitoBright IM Red for Immunostaining试剂 MT15 免疫荧光用线粒体荧光染料Red
MitoBright LT Green试剂 MT10 线粒体长效荧光染色(绿色)
MitoBright LT Red试剂 MT11 线粒体长效荧光染色(红色)
MitoBright LT Deep Red试剂 MT12 线粒体长效荧光染色(深红色)

线粒体膜电位检测试剂盒 MT13 线粒体膜电位检测
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit MT09 线粒体膜电位检测
Cellstain- MitoRed试剂 R237 线粒体ATP检测-红色

Mtphagy Dye试剂 MT02 线粒体自噬
线粒体自噬—Mitophagy Detection Kit MD01 线粒体自噬检测

mtSOX Deep Red – Mitochondrial Superoxide Detection MT14 线粒体超氧化物检测
铁离子荧光探针—Mito-FerroGreen M489 线粒体内二价铁离子检测
Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂 MT05 线粒体内单线态氧检测
MitoPeDPP试剂 M466 线粒体内脂质过氧化物检测

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence A552 检测细胞中ADP与ATP的比率
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒 E297 氧消耗量检测
Cell Counting Kit-Luminescence试剂盒 CK18 ATP活性检测
Glutamine Assay Kit-WST试剂盒 G268 谷氨酰胺的定量检测
Glutamate Assay Kit-WST试剂盒 G269 谷氨酸的定量检测
NAD/NADH Assay Kit-WST试剂盒 N509 NAD/NADH检测试剂盒
NADP/NADPH Assay Kit-WST试剂盒 N510 NADP/NADPH检测
α-Ketoglutarate Assay Kit-Fluorometric K261 对细胞内的α-KG进行定量检测

线粒体功能研究

▶ 线粒体呼吸指标一览表

▶ 线粒体染色选择指南

▶ 线粒体自噬检测

▶ 线粒体膜电位选择指南

▶ 代谢相关检测

▶ 癌症关联检测

▶ 脂质过氧化物积累与细胞衰老、线粒体之间的联系

 

线粒体质量控制途径

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸

线粒体关联产品详情,可点击页面上表产品链接

其他关联产品

 

线粒体呼吸 OCR耗氧率检测       Oxygen Consumption Rate(OCR) Plate Assay Kit
外泌体提取                                 ExoIsolator Exosome Isolation Kit
外泌体膜标记检测                       ExoSparkler Exosome Membrane Labeling Kit-Green/Red/Deep Red
溶酶体功能(pH)检测               Lysosomal Acidic pH Detection Kit

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸

线粒体简要通路图

 

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸同仁化学 线粒体简要通路图.pdf

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸

线粒体相关检测指标

线粒体自噬检测

线粒体自噬
试剂 Mtphagy Dye Keima-Red
原理 线粒体自噬染料是一种PH敏感的荧光探针,该染料聚集在线粒体中,并由溶酶体的酸性条件而发出荧光 这是一种基于PH感应比值的荧光蛋白。该蛋白在溶酶体中具有比较高的荧光比值(如550 nm/440 nm)。
固定细胞染色
活细胞染色 Yes Yes
活细胞染色后固定
染色时间 >30 min
Ex/Em 530/700 440,550/620
产品货号 MD01 , MT02

线粒体自噬Mitophagy试剂盒【MD01】无需蛋白质表达/转染。添加试剂即可轻松检测线粒体自噬。

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸

线粒体膜电位检测

Membrane potential

线粒体膜电位

试剂 JC-1 MT-1 TMRM,   TMRE
原理 JC-1是一种被广泛使用的小分子线粒体膜电位探针,依赖于线粒体膜电位在线粒体中聚集,染料伴随聚集过程,荧光从绿色   (530 nm) 变为红色 (590 nm)。当线粒体发生去极化,红/绿荧光强度比值降低。 由于膜电位,细胞渗透性荧光染料在完整的线粒体中积累。MT-1具有极强的光稳定性,比JC-1更灵敏,可以提供与TMRE相当的检测灵敏度。 该试剂是细胞渗透性荧光染料,由于膜电位在完整的线粒体中积累。探针扩散发生在膜电位降低的受损线粒体中。
固定细胞染色
活细胞染色 Yes Yes Yes
活细胞染色后固定 Yes
染色时间 10- 60 min 30 min 30- 60 min
Ex/Em Monomer:514/529

J-aggregation: 585/590

530-560 / 570-640 550/575
产品货号 MT09 MT13

JC-1、TMRE和TMRM广泛用于监测线粒体膜电位。然而,这些染料具有局限性,例如光稳定性低和醛固定后的保留性差。这些限制导致实验再现性差。

MT-1 MitoMP检测试剂盒具有高光稳定性,即使在染色后用多聚甲醛固定的细胞中。这些特征使得MT-1试剂盒能够产生高度可重复的结果。

此外,该试剂盒中包含的成像缓冲液使背景荧光最小化,并在进行测定时保持细胞活力。

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸

线粒体金属离子检测

Iron ion (Fe2+)

亚铁离子

Calcium ion (Ca2+)

钙离子

试剂 Mito-FerroGreen Rhod 2-AM
原理 该试剂是一种细胞通透性探针,其积累在线粒体中,并与线粒体中的亚铁离子发生特异性反应,发出绿色荧光。 该试剂是一种细胞通透性探针,该探针积聚在线粒体中,并与线粒体中的钙离子发生特异性反应,发出红色荧光。
固定细胞染色
活细胞染色 Yes Yes
活细胞染色后固定
染色时间 30 min 30-60 min
Ex/Em 505/535 553/576
产品货号 M489 R002

线粒体荧光染色

Mitochondria staining

线粒体染色

试剂 MitoBright LT series MitoBright IM Red MitoTracker series
原理 细胞渗透性荧光染料,基于线粒体膜电位而在完整的线粒体中积累。 细胞渗透性荧光染料,由于膜电位而聚集在完整的线粒体中,并与蛋白质和其他生物分子共价结合。 细胞渗透性荧光染料,基于线粒体膜电位而在完整的线粒体中积累。
固定细胞染色
活细胞染色 Yes Yes Yes
活细胞染色后固定 Yes
染色时间 >10 min 30 min 15 -45 min
Ex/Em 493/508,547/563, 643/663 548/566 490/516~644/665
产品货号 MT10MT11MT12 MT15

在HeLa细胞中4天后,MitoBright LT仍被证实保留在线粒体中。

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸

日本同仁化学自噬| DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

自噬

通过自身降解的途径,从而将一些没有用的杂质变废为宝成为营养物质。在饥饿或者化学刺激的情况下,在细胞质中首先会形成隔离膜,待降解的物质逐渐包裹其中,最终形成自噬体。随后溶酶体的外膜会与溶酶体外膜相融合,此时溶酶体中的酸性水解酶发挥作用,开始降解之前自噬体内含物,从而达到自噬目的。动态观察整个自噬流对于反映细胞内的自噬活性举足轻重。
线粒体自噬
细胞自噬

品名 货号 用途
线粒体自噬—Mitophagy Detection Kit MD01 线粒体自噬检测试剂盒
Mtphagy Dye试剂 MT02 线粒体自噬

线粒体自噬试剂盒原理:

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

自噬

细胞自噬流程图:

自噬

自噬试剂原理:

自噬

DAPGreen和DALGreen在头部具有末端氨基功能的化学结构(该结构如磷脂酰乙醇胺)该结构的一部分嵌入在疏水膜环境中。

自噬

自噬隔离膜在形成中被DALGreen和DAPGreen处理的共聚焦显微镜图像 比例尺:20 μm

自噬

当自噬体膜形成时,DAPGreen嵌入膜内。嵌入的DAPGreen是一种pH不敏感探针,在亲脂性条件下,其荧光增强。

自噬

当自噬体的膜形成时,DALGreen同样会嵌入膜内,DALGreen是一种pH敏感探针,在酸性条件下,自噬体与溶酶体结合后荧光增强。

实验例:

1.DALGreen与LC3的高度相关性

自噬

用1 μmol/l的DALGreen染色后,用无氨基酸培养基分别培养HeLa细胞0、2、4、6h。

用20 μm/l抗LC3抗体和抗肌动蛋白抗体检测的LC3 I-和LC3 II的相对表达水平并用免疫印迹分析法验证其相对表达水平。

结果证明DALGreen荧光强度的增加与LC3-I, LC3-lI转化率相关。

2.自噬细胞的荧光成像

自噬

用1 μmol/l DALGreen染色后,并用野生型和ULK 1/ULK2 DKO的MEF细胞分别进行处理(或不处理)

并添加雷帕霉素和氯喹8小时后。在ULK1/ULK2双敲除(DKO)MEF细胞中几乎没有观察到DALGreen荧光信号,

对酵母的同源功能有缺陷Atg1蛋白,即使存在氯喹(COL)。DALGreen荧光信号也正确反映了自噬的发生。

3.对自噬细胞抑制处理后的荧光成像

自噬

在3-Methyladenine(3-MA)存在的情况下,饥饿HeLa细胞的DALGreen荧光值降低。

样品:5小时饥饿的HeLa细胞,DALGreen:1 μmol/l,3-MA:5 mmol/l,比例尺:20 μm

4.DAPGreen和tagRFP-LC3共染

自噬

DAPGreen荧光信号与tagRFP-LC3信号有高度相关性,且DAPGreen和tagRFP-LC3都可以染色活细胞。

样本:tagRFP-LC3表达MEF细胞。DAPGreen: 0.1 μmol/l,比例尺:10 μm

5.DAPGreen和Lamp1-tagRFP共染色

自噬

从溶酶体中可观察到大量DAPGreen荧光信号并看到DAPGreen与Lamp 1-tagRFP

(溶酶体染色探针)存在共定位关系。因为DAPGreen不仅染色自噬体,而且也染色自噬溶酶体。

样本:Lampl-tagRFP表达的MEF细胞  DAPGreen: 0.1 μmol/l,比例尺:10 μm

6.DALGreen和tagRFP-LC3共染

自噬

几乎所有的DALGreen荧光信号都与LC3存在共定位关系。tagRFP-LC3

不仅染色自噬体也染色自溶酶体,而DALGreen的荧光信号表示细胞中有自噬溶酶体的存在

样本: tagRFP-LC3表达MEF细胞  DALGreen:1 μmol/l,比例尺:10 μm

7.DALGreen和Lamp1-tagRFP共染

自噬

几乎所有的DALGreen都与Lamp1-tagRFP共定位。Lamp-tagRFP染色溶酶体,

而DALGreen的荧光信号表示细胞中有自噬溶酶体的存在

样本:Lamp1-tagRFP表达的MEF细胞,DALGreen:1 μmol/l,比例尺:10 μm

Enzo使用荧光染料检测牛主动脉细胞的自噬情况


Enzo使用荧光染料检测牛主动脉细胞的自噬情况

Enzo使用荧光染料检测牛主动脉细胞的自噬情况



细胞组分的降解对于维持体内平衡不可或缺,这个复杂的过程受到内溶酶体和自噬途径的调节。目前已经拥有多种试剂和报告系统研究这些途径,但是每种研究手段都有优点和局限性。最近Histochemistry and Cell Biology杂志上发表了一篇文章,Oeste和他的同事们使用Enzo的Cyto-ID® 和Lyso-ID® 染料产品检测牛主动脉内皮细胞(BAEC)中的自噬泡和内溶酶体泡。虽然他们的结果是在特定的细胞系和特定的实验条件下得到的,但是他们的发现有力证明了这些染料的使用优势,可替代或者与LC3报告系统中的染料(如monodansyl cadaverine, MDC)联用。其结果如下: 

Lyso-ID信号可与LampI-GFP 和GFP8共定位,这个GFP结构包含内溶酶体靶向识别RhoB GTP酶的信号。当用chloroquine或干扰内涵体稳态的U18666A处理细胞时,共定位会持续。

·         使用RFP-LC3转染的牛主动脉内皮细胞,利用氨基酸饥饿法诱导其细胞发生自噬后,研究人员展示了Cyto-ID自噬染料与RFP-LC3的共定位结果图。尤其是当加入溶酶体蛋白酶抑制剂抑制RFP-LC3的降解,这种共定位更为明显。饥饿处理过程中,Cyto-ID信号会早于RFP-LC3的点状信号之前形成,这为自噬泡形成提供了早期检测。在饥饿期间,Cyto-ID信号会对自噬诱导剂Rapamycin及抑制剂3-methyladenine (3-MA)产生应答。

·         作者指出相比于MDC带有显著本底而没有自噬诱导的信号,Cyto-ID减少了背景色。Bampton及其同事(2005)早先曾提出,MDC会因离子捕获而在酸性部位积累,导致背景信号显著。伴随着自噬的诱导, 只有部分MDC和Cyto-ID信号重叠,反映了Cyto-ID染料标记更为特异。

·         结合应用Cyto-ID和Lyso -ID染料,Oeste和同事实验结果中预测了来源于噬溶酶体融合的共同定位信号,以及Cyto-ID和Lyso -ID染色细胞器的独特亚群。

 

Enzo为自噬研究提供了多种产品,包括活细胞分析试剂盒、免疫检测、化合物库和抗体,以下是其中一些产品的简介。

<

<

产品

特点

分析试剂盒

Lyso-ID® Red detection kit (GFP-Certified®)

适用于溶酶体和自生性溶酶体活细胞成像。长波红光易于与其它荧光探针联用,如荧光素,香豆素和GFP。极耐光漂白、不易猝灭。不会转成绿色荧光,不会发射别的荧光。

Lyso-ID® Green detection kit

该试剂盒是专门为表达RFP细胞株和罗丹明类荧光团设计的,蓝色、青色或橙黄色荧光蛋白(BFPs,CFPs,OFPs个)也可以使用。

Lyso-ID® Red cytotoxicity kit (GFP-Certified®) for microplates

快速,10-15分钟染料孵育、高通量分析。在短短的3小时内即可获得定量结果,包含药物处理过程。

Cyto-ID® Autophagy detection kit

简单、无需转染即可定量监测活细胞自噬。

PROTEOSTAT® Aggresome detection kit

定量检测错误折叠的蛋白,与神经退行性疾病、肝脏疾病和毒理学的研究相关。

p62 ELISA kit

用于自噬研究,高效、定量的p62 ELISA试剂盒,可检测低至100 pg/ml的p62进行。

NBR1 ELISA kit

率先投放市场,用于自噬研究的NBR1定量检测试剂盒,可检测65 pg/ml的 NBR1。

SCREEN-WELL® Autophagy library

不同结构和机制的化合物,用于胞内和体外研究,促进/抗自噬分子的作用机制。

抗体

LC3, mAb (2G6) (fluorescein labeled)

识别所有单体(LC3-I)和PE交联(LC3-II)形式的人LC3/GABARAP 蛋白 (Atg8 同系物) 。

LC3, mAb (5H3)

识别人LC3。识别两种形式的内源性LC3。

LC3B, mAb (2G6)

识别人、小鼠、大鼠、猴和仓鼠LC3B。识别两种形式的内源性LC3B。

LC3B, mAb (5F10)

识别人、小鼠、大鼠、狗和仓鼠LC3B。识别这两种形式的内源性LC3B。

小分子

3-Methyladenine

PI3激酶抑制剂,著名的自噬抑制剂。

Rapamycin

大环-三烯抗生素具有强效免疫抑制剂的活性。它与FKBP12形成的复合物结合一个效应子,从而抑制IL-2和其它生长因子。

U-18666A

可抑制胆固醇从内涵体/溶酶体运输至内质网的化合物。

References:

 

· Oeste CL, et al. Interactions between autophagic and endo-lysosomal markers in endothelial cells. Histochem. Cell. Biol. (2012) (epub ahead of print).

· Bampton ET, et al. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy. (2005) 1:23–36.

· Niemann A, et al. The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem (2000) 48:251-258.

· Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol (2009) 10:513-525.

Enzo使用荧光染料检测牛主动脉细胞的自噬情况

Enzo新型活细胞自噬荧光检测试剂盒


Enzo新型活细胞自噬荧光检测试剂盒

Enzo新型活细胞自噬荧光检测试剂盒

 


 自噬是溶酶体介导的胞内降解途径,是真核细胞在恶劣环境(比如营养缺乏)威胁时引发的降解和细胞内容物再循环的过程。这一途径在对各种应激条件进行应答从而在促进细胞内环境平衡、能量平衡和细胞存活上具有重要的作用,更多的证据表明自噬功能与多种疾病密切相关,包括癌症、神经退行性疾病、糖尿病、自身免疫性疾病和心血管疾病。

  2014年6月的Nature杂志刊登细胞自噬在抗帕金森病方面,抑制位于线粒体中的去泛素酶USP30的活性会增强神经元中受损线粒体的自噬和清理,有益于帕金森病的治疗。2013年7月Journal of Clinical Investigation杂志刊登研究II型糖尿病个体自噬作用可抑制毒性的胰岛淀粉样多肽(IAPP)的过量积累,从而保护胰腺β细胞免于受损。研究者希望早日找到保护胰腺β细胞的靶点以开发出II型糖尿病的新疗法。美国加州大学洛杉矶分校的生物学家发现,果蝇机体和大脑的衰老延缓与激活肠道或神经系统中的关键的能量传感器AMPK基因后引起的自噬过程加快密切相关。

  Cyto-ID® 自噬检测试剂盒是Enzo公司的拳头产品,该产品可代替传统LC3-GFP法,通过荧光示踪物来选择性检测自噬通路中的各种囊泡包括自噬前体、自噬体和自溶酶体,用于流式细胞仪,无需转染,就能在荧光显微镜下跟踪活细胞的自噬过程进行定量分析,或用流式细胞仪进行高通量筛选,甚至能标记原代细胞。并且该产品可以进行自噬通路的动力学分析,为研究者展现自噬体形成和消除之间的动态平衡。Cyto-ID® 自噬检测试剂盒也可以与检测其他细胞器的染料结合使用:与Mito-ID® Red联用区分检测细胞自噬和线粒体自噬,与PROTEOSTAT® Protein aggregation assay联用检测聚集小体及小体中的变性蛋白,与Lyso-ID® Red detection kit(GFP-Certified)联用区分检测自噬体和溶酶体,与Lyso-ID® Red cytotoxicity kit(GFP-Certified) kit联用监测自噬与细胞毒性的相关性。

溶酶体的染色极少。

Enzo新型活细胞自噬荧光检测试剂盒

Starvation诱导细胞自噬,左图绿色为自噬体,右图为对照。蓝色为荧光染料Hoechst染细胞核。

◆特点

● 专有染料特异性结合自噬囊泡

● 试剂盒中包含已知活性的自噬抑制剂与诱导剂

● 快速定量监控,全面分析自噬情况

● 无需转染LC3-GFP,省事省力

● 低背景,对其它细胞器染色较低

● 特别适用于筛选自噬激活剂与抑制剂

● 量监测自噬通量和自噬溶酶体的积累

产品编号

产品名称

规格

ENZ-51031-K200

Cyto-ID® Autophagy Detection Kit

200tests

已验证可适用的细胞系

General Cells Cancer Cells
osteosarcoma-derived cells melanoma cells
hepatocytes ovarian cancer cells
Jurkat T cells breast cancer cells
bovine aortic endothelial   cells cervical adenocarcinoma cells
B-lymphoblastoid cells colon adenocarcinoma cells
Chinese hamster ovary (CHO)   cells SK-N-SH neuroblastoma cells


相关活细胞分析产品

产品编号 产品名称 规格
ENZ-51034-0100

Lyso-ID® Green detection kit

for microscopy

100tests
ENZ-51005-0100

Lyso-ID® Red detection kit  

(GFP-Certified®) for microscopy

100tests
ENZ-51015-KP002

Lyso-ID® Red cytotoxicity kit  

(GFP-Certified®) for microplates

1Kit
ENZ-51035-0025

PROTEOSTAT® Aggresome detection kit

for flow cytometry and fluorescence microscopy

25tests
ENZ-52252 MM 4-64 1mg
ADI-905-721-100 Beclin-1, pAb 100µg
ALX-850-057-KI01 p53 (human) ELISA kit 96wells
ADI-960-070

ImmunoSet® p53/MDM2 complex ELISA

development set

5×96wells
ADI-EKS-715 HSP70 high sensitivity ELISA kit 96wells

 

   

自噬研究用抗体

自噬研究用抗体

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

自噬研究用抗体自噬研究用抗体



◆兔抗大鼠 LC3


  LC3 是芽殖酵母自噬相关蛋白 Atg8 的哺乳类类似物。LC3 在细胞质上合成后,切除C末端形成 LC3-I。LC3-I 与 E1 样泛素连接酶 Atg7、E2 样泛素连接酶 Atg3 携带的磷脂结合形成 LC3-II。LC3-II 结合形成自噬膜型。因此,LC3 被用做自噬的标志物之一。本产品可同时识别 LC3-I、LC3-II。

● 形状:抗血清。不含防腐剂、稳定剂

 抗原:合成肽,与大鼠LC3B的氨基酸序列 5-18 相当

 特异性:与人、大鼠、小鼠 LC3B 反应

  实际稀释倍率:免疫细胞化学 1:200~500(共聚焦显微镜)

  Western blotting 1:500~5,000

 推荐稀释缓冲液:1% BSA in 20 mmol/L Tris-HCl(pH 7.5), 0.15 mol/L NaCl,0.1% NaN3

   背景较高情况下,请使用加了 0.1% Tween20 的稀释缓冲液。

 

小鼠 MEF 提取液 Western blotting


自噬研究用抗体

用 SDS-PAGE 分离 MEF(小鼠胎儿成纤维细胞)提取液,转至 PVDF 膜后,将本品作为第一抗体,

进行 Western blotting。
Atg7+・・・野生型,Atg7-・・・Atg7 缺失型

一抗:本品(1:5,000)、室温、反应1小时

二抗:HRP 标记 山羊抗兔 IgG(1:20,000),室温、反应1小时

(数据提供:顺天堂大学医学部生化学 第一讲座 上野隆)

HeLa 细胞的荧光染色


自噬研究用抗体

样品:经多聚甲醛固定和毛地黄皂苷处理的 HeLa 细胞

封闭液:1% BSA和含1%正常羊血清的 20 mmol/LTris-HCl(pH7.5),0.15 mol/L NaCl,0.1% NaN3、30℃、反应1小时

一抗:本品(1:500)、30℃、反应1小时
二抗:Cy3 标记羊抗兔 IgG(1:2,000)、30℃、反应1小时
(数据提供:顺天堂大学大学院医学研究科研基地ー吉川美加)

产品编号

产品名称

规格

容量

010-22841

Anti Rat LC3, Rabbit        

免疫组化用

50 μL

 


◆兔抗 SQSTM1/A170/p62


  SQSTM1/A170/p62 是泛素结合蛋白,氧化应激反应依赖性表达。SQSTM1/A170/p62 的异常化,会导致骨代谢异常、肥胖、2型糖尿病等。近来有报道称 SQSTM1/A170/p62 可与自噬相关因子 LC3 结合,因此在诱导泛素/蛋白酶体系到自噬系的蛋白质分解方面备受关注。

 形状:大肠杆菌蛋白质吸收后,2倍稀释的抗血清。防腐剂含 0.1% 的 NaN3

 抗原:小鼠 SQSTM1(A170)的氨基酸序列 254-333 重组体(N末端含 T7tag,C末端含 His tag)

 特异性:与大小鼠 SQSTM1(A170/ZIP)反应;与人 SQSTM1(A170/ZIP)反应极弱。

 实际稀释倍率:Western blotting  1:200;

  免疫组织染色  1:1,000

  免疫荧光染色  1:1,000

 

小鼠 MEF 提取液的 Western blotting


自噬研究用抗体

固定:4%多聚甲醛

包埋:石蜡包埋 

染色:亲和素-生物素- 过氧化物酶素法

一抗:本品 1:1,000

二抗:生物素标记抗兔 IgG 

(数据提供:鸟取大学 中曾一裕)

产品编号

产品名称

规格

容量

018-22141

Anti SQSTM1/A170/p62, Rabbit

SQSTM1/A170/p62抗体

免疫组化用

100 μL



◆兔抗人Atg7


  Atg7 是自噬反应中形成自噬体所必须的基因之一。能与泛素样蛋白质 Atg8 和 Atg12 结合的 E1 样泛素连接酶。

 形状:抗血清。不含防腐剂和稳定剂

 抗原:与人 Atg7 的氨基酸序列 556-571 相当的合成肽

 特异性:与人、大鼠、小鼠的 Atg7 反应

 实际稀释倍率:Western blotting  1:1,000~5,000

 推荐稀释缓冲液:1% BSA in 20mmol/L Tris-HCl(pH 7.5), 0.15mol/L NaCl, 0.1% NaN3
  ※ 背景较高的情况下,请使用加入 0.1% Tween20 的稀释缓冲液。

自噬研究用抗体

用 SDS-PAGE 分离 MEF(小鼠胎儿成纤维细胞)的提取液,转至 PVDF 膜后,以本品为第一抗体,

进行 Western blotting。

Atg7+, Atg3+ ・・・野生型、Atg7- ・・・Atg7 缺失型、 Atg3- ・・・Atg3 缺失型
一抗:本品(1:1,000)、室温、反应1小时
二抗:HRP 标记山羊抗兔 IgG(1:20,000)、室温、反应1小时
(数据提供:顺天堂大学医学部生化学第一讲座 上野隆)


产品编号

产品名称

规格

容量

013-22831

Anti Human Atg7, Rabbit     

免疫组化用

50 μL

 


◆相关产品


自噬活性化因子


产品编号

生产商编号

产品名称

规格/制造商

容量

185-01721

Resveratrol

白藜芦醇

生化学用

100 mg

181-01723

500 mg

 


自噬抑制剂


产品编号 生产商编号 产品名称 规格/制造商 容量

038-17971

Chloroquine diphosphate

磷酸氯喹

生化学用

5 g

036-17972

25 g

054-08021

E 64d

细胞生物学用

1 mg

050-08023

5 mg

129-04861

LY-294002

生化学用

5 g

125-04863

10 g

123-04864

25 g

230-02341

(+)-Wortmannin

渥曼青霉素

细胞生物学用

2 mg

236-02343

10 mg


参考文献

1). Ishii, T., et al.: Biochem. Biophys. Res. Commun., 226, 456(1996).

2). Ishii, T., et al.: J. Biol. Chem., 275, 16023(2000).

3). Komatsu, M., et al.: Cell, 131, 1149(2007).

4). Nakaso, K., et al.: Brain Res. Mol. Brain Res., 69, 155(1999).

5). Jiang,P.,et al.: Methods,75,13(2015).

产品列表
产品编号 产品名称 产品规格 产品等级 备注
010-22841 Anti Rat LC3, Rabbit 50 μL 免疫组化用
018-22141 Anti SQSTM1/A170/p62,   Rabbit 100 μL 免疫组化用
013-22831 Anti Human Atg7,   Rabbit  50 μL 免疫组化用

CYTO-ID® 自噬检测试剂盒 2.0 CYTO-ID® Autophagy detection kit 2.0

CYTO-ID® 自噬检测试剂盒 2.0
CYTO-ID® Autophagy detection kit 2.0

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

CYTO-ID® 自噬检测试剂盒 2.0CYTO-ID® 自噬检测试剂盒 2.0                              CYTO-ID® Autophagy detection kit 2.0

  CYTO-ID® Autophagy Detection Kit 2.0 使用新型染料检测自噬小泡和监控活细胞自噬流,选择性标记积累的自噬小泡。染料已通过优化,不染溶酶体,在自噬前体、自噬体和自噬溶酶体里呈现出明 亮的荧光。该试剂盒提供了一种无需细胞转染,可以在活细胞中监控细胞自噬的快速定量方法。

◆特点


  ● 更明亮,更耐光,特异性染色自噬小泡

  ● 无需转染及转染效率验证

  ● 快速量化原生异质性细胞群中的自噬

  ● 不染溶酶体,减少其他染料的背景干扰

   便于高通量筛选自噬激活剂和抑制剂


◆原理


  该产品所用探针是阳离子两亲性示踪剂(CAT)染料,以类似诱导磷脂药物的方式迅速进入到细胞中。染料的功能基团能够选择性标记与自噬通路相关的小泡,而不会在溶酶体中聚集。


胞内物质被扩大的膜囊包裹,吞噬泡形成双层膜囊泡,成为自噬体。自噬体外膜随后与溶酶体融合,和内部物质被自噬性溶酶体降解。自噬的各种调节因子也被描绘于图中。

CYTO-ID® 自噬检测试剂盒 2.0                              CYTO-ID® Autophagy detection kit 2.0

自噬原理图

◆应用


CYTO-ID® 绿色检测试剂2(A组)在PBS确定的吸光度和荧光图谱(499/548 nm)。


Hoechst33342(图B)在1X测定缓冲液来确定的吸光度和荧光图谱(350 /461 nm)。

的发放

CYTO-ID® 自噬检测试剂盒 2.0                              CYTO-ID® Autophagy detection kit 2.0

HeLa cells使用 CYTO-ID® Green Detection Reagent 2进行染色


(A) 完全培养基 (B) 在饥饿培养基 (EBSS)中添加40 µM Chloroquine培养4 h 。在含有Chloroquine 的EBSS培养基中培养的细胞表现非常明亮的绿色荧光信号和点状结构。

CYTO-ID® 自噬检测试剂盒 2.0                              CYTO-ID® Autophagy detection kit 2.0


运用流式细胞术分析Jurkat细胞的自噬


通过0.5 µM Rapamycin (RAP), 10 µM Chloroquine (CLQ)处理或不处理Jurkat细胞,或两者一起处理20 h。CYTO-ID® Green Detection Reagent 2染色30 min后,洗脱,用流式细胞仪分析。直方图叠加呈现结果。用RAP+CLQ处理细胞显示荧光有升高。

CYTO-ID® 自噬检测试剂盒 2.0                              CYTO-ID® Autophagy detection kit 2.0

微孔板分析HepG2细胞的自噬


HepG2经过DMSO(对照),0.5 μM Rapamycin (Rap), 10 µM Chloroquine (CLQ),或0.5 µM Rap 和10 µM CLQ同时培养20 h。细胞经过Hoechst 33342染色进行细胞数目标准化。Rap 和CLQ同时处理细胞显示自噬作用上升。

CYTO-ID® 自噬检测试剂盒 2.0                              CYTO-ID® Autophagy detection kit 2.0

◆相关产品


产品编号

产品名称

规格

备注

应用

ENZ-51002-25

GFP-Certified® Apoptosis/Necrosis detection kit

细胞凋亡/坏死检测试剂盒

25 assays

多重检测,区分正常、

早期凋亡、晚期凋亡和坏死细胞,与GFP和其他绿色荧光探针兼容。

FC,荧光显微镜,荧光检测

ENZ-51002-100

100 assays

ENZ-51021-K200

Nuclear-ID® Green

hromatin condensation detection kit

细胞核绿色染色体皱缩检测试剂盒

1 Kit

高渗透性的绿色荧光染色增强了细胞凋亡诱导染色质固缩。

FC,荧光显微镜,荧光检测

ENZ-52406

NUCLEAR-ID® Red DNA stain

DNA染色试剂盒(红色荧光)

200 µL

细胞可渗透的DNA染色应用广泛。

≥93%(HPLC),FC,荧光检测

ENZ-CHM103-0200

Nuclear-ID® Blue

DNA stain   (GFP-Certified®)

Nuclear ID® 蓝色DNA染色(GFP细胞系)

200 µL

细胞可渗透的DNA染色应用广泛。

≥93%(HPLC),FC,荧光检测

ENZ-51015-KP002

Lyso-ID® Red

cytotoxicity kit (GFP-Certified®)

溶酶体细胞毒理检测试剂盒(红色荧光)(绿色细胞系)

1 Kit

快速,定量和HTS-兼容的检测活细胞毒性试剂。

荧光显微镜,荧光检测

ENZ-51035-0025

PROTEOSTAT® Aggresome etection kit
蛋白内稳态® 聚集体 检测试剂盒

25 tests

Robust、定量的聚集小体用于神经退行性疾病,肝病和毒理学研究

FC,荧光显微镜,荧光检测

ENZ-51035-K100

100 tests

相关产品资料请点击下载:活细胞荧光分析 Ver.3

自噬技术文章:


通过流式细胞术定量自噬解释与白血病肿瘤生长的联系

Posted By Morgan Mathieu

Tags: Autophagy, Cancer


主要参考文献


(1)


A live-cell fluorescence microplate assay suitable for monitoring vacuolation arising from drug or toxic agent treatment: J. Coleman, et al.; J. Biomol. Screen. 15, 398 (2010), 摘要;

(2)


Methods in mammalian autophagy research: N. Mizushima, et al.; Cell 140, 313 (2010),摘要;

(3)


Assays to Assess Autophagy Induction and Fusion of Autophagic Vacuoles with a Degradative Compartment, Using Monodansylcadaverine (MDC) and DQ-BSA: C.L. Vazquez & M.I. Colombo; Methods Enzymol. 452, 85 (2009),摘要;

(4)


Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux: M. Rossi, et al.; J. Cell Sci. 122, 3330 (2009),  摘要;

(5)


Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes: D.J. Klionsky, et al.; Autophagy 4, 151 (2008),  摘要;

产品列表
产品编号 产品名称 产品规格 产品等级 备注
ENZ-KIT175-0200 Cyto-ID® Autophagy detection kit 2.0
 CYTO-ID®自噬检测试剂盒2.0
200 tests