QSenseE1石英晶体微天平

QSenseE1石英晶体微天平

QSense E1 石英晶体微天平

产品编号:
市场价:¥0.00
会员价:¥0.00
品牌:中文
生产厂家:QSense
需求数量:

  • 产品概览
  • 技术参数
  • 订购信息
  • 相关资料
  • 相关产品

E1作为Q-Sense公司具有耗散因子检测功能的第二代石英晶体微量天平,可以对多种不同类型表面的分子相互作用和分子吸附进行研究,应用范围包括蛋白质、脂质、聚电解质、高分子和细胞/细菌等与表面或与已吸附分子层之间的相互作用。

E1可以测定非常薄层的吸附层的质量,并同步提供如粘弹性等结构信息。它基于QCM-D专利技术,非常灵敏和快速,可提供多个频率和耗散因子数据,用于充分了解在传感器表面吸附的分子的状态。

*****************************测试范围及优势*************************

1、质量测定:测试表面形成的分子层的质量,精度达到毫微克。例如,可检测到1%或更低浓度蛋白质单分子层的结构变化

2、结构变化:同步测试结构变化,因此可以区分两个相似的键合反应或观察到吸附层上发生的相转变

3、实时分析:可以进行实时记录和动力学评估

4、无须标记:无须对分子做标记,仪器测定的是分子本身

5、柔性的表面选择:适用于任何能形成薄膜的表面如金属、高分子、化学改性表面等

6、流量测试:特别设计的样品池可以在控温环境下进行流量测定

传感器和样品处理系统的技术参数如下:

1、传感器晶体: 5MHz,直径14 mm,抛光,金电极

2、传感器数量: 1个

3、传感器上方体积: 40ul,采用5MHz晶体,Q-Sense流动模块

4、最小样品体积: 200ul

5、工作温度: 18-45°C,由软件控制,控温精度为:0.02°C

6、流动速率: 0-1 ml/min

7、清洁处理: 所有与液体接触元件均可拆卸,并可在超声波浴中清洗

QSenseE4Auto石英晶体微天平

QSenseE4Auto石英晶体微天平

QSense E4 Auto 石英晶体微天平

产品编号:
市场价:¥0.00
会员价:¥0.00
品牌:中文
生产厂家:Q-Sense
需求数量:

  • 产品概览
  • 技术参数
  • 订购信息
  • 相关资料
  • 相关产品

E4 Auto作为Q-Sense公司具有耗散因子检测功能的第三代石英晶体微量天平,采用全自动液体处理系统,四通道进样装置完全由程序设定,可自动完成进样与实验。该系统可以对多种不同类型表面的分子相互作用和分子吸附进行研究,应用范围包括蛋白质、脂质、聚电解质、高分子和细胞/细菌等与表面或与已吸附分子层之间的相互作用。

E4可以测定非常薄层的吸附层的质量,并同步提供如粘弹性等结构信息。它基于QCM-D专利技术,非常灵敏和快速,可提供多个频率和耗散因子数据,用于充分了解在传感器表面吸附的分子的状态。

*****************测试范围及优势****************

1、质量测定:测试表面形成的分子层的质量,精度达到毫微克。例如,可检测到1%或更低浓度蛋白质单分子层的结构变化

2、结构变化:同步测试结构变化,因此可以区分两个相似的键合反应或观察到吸附层上发生的相转变

3、实时分析:可以进行实时记录和动力学评估

4、无须标记:无须对分子做标记,仪器测定的是分子本身

5、柔性的表面选择:适用于任何能形成薄膜的表面如金属、高分子、化学改性表面等

6、流量测试:特别设计的样品池可以在控温环境下进行流量测定

传感器数量: 4个,也可使用1、2或3个
传感器上方体积: 40ul
最小样品体积: 100ul
工作温度: 18-45°C,由软件控制,控温精度为:0.02°C
流动速率: 50-200 μl/min
清洁处理: 所有与液体接触元件均可拆卸,并可在超声波浴中清洗
传感器晶体: 5MHz,直径14 mm,抛光,金电极

频率范围:1-70MHz,(对于5MHz晶片,从7个频率到13个泛频,最高至65MHz)
最大时间分辨率,1个传感器、1个频率:~每秒200个数据点
水中最大质量精度:~0.5 ng/cm2(5 pg/mm2)
水种常规质量精度:~1.8 ng/cm2(18 pg/mm2)
水中最大耗散因子精度:~0.0410-6
水种常规耗散因子精度:~0.110-6

液体处理能力
X/Y/Z三维进样器,含固定样品架;四通道取样臂,与QCM-D流动模块的进口、出口和蠕动泵连接
取样臂速度:350 mm/s(X与Y方向)和 125 mm/s(Z方向)
样品数量, 标准配置 80个 (20 x 4),9 ml样品管; 44个 (11x 4),20 ml样品管

Amberlite XAD-2 大孔吸附树脂SU853005

Amberlite XAD-2 大孔吸附树脂

简要描述:

 

Amberlite XAD-2是一种聚(苯乙烯-二乙烯基苯)吸附树脂,它常用来吸附分子量能高达20,000的疏水化合物:如酚类化合物,有机去除物,表面活性剂,芳香族化合物,抗生素回收。

 

XAD-2是zui常用的二恶英/呋喃取样吸附材料之一。这种非离子型大孔树脂,对分析物的吸附与脱附主要通过疏水性和极性作用,并在等度条件下进行。

 

zui高使用温度:200度

吸附剂目数:20/60目

Amberlite安伯莱特 XAD-2;大孔吸附树脂

Amberlite XAD-2大孔吸附树脂 生产厂商:罗门哈斯,是非离子型的大孔树脂,这种树脂吸附分子型有机化合物效果很好,XAD树脂是一种芳烃聚合物,广泛应用于疏水性化合物(分子量可达20000);酚、有机物分离;表面活性剂;芳香烃化合物;催化剂;金属;抗生素提取;在水中有机污染物的富集

Matrix  :        styrene/divinylbenzene polyaromatic

 diameter :        20-60目 mesh

 pore volume :       0.65 ml/g   Pore Size :            90 A

 

surface area:         300 m2/g   Density:                  1.02 g/m

 

美国 罗门哈斯 原厂生产 Amberlite商标属于 罗门哈斯  

中文名【CN】 规格【G,克】 报价【Price】 货号【N】  

XAD-2 大孔树脂 250G 650 3025-U  

XAD-2 大孔树脂 500G 代替10357 1,080.00 3025-U  

XAD-2 大孔树脂 1KG 1,960.00 3025-U  

XAD-2 大孔树脂 5KG  代替SU853005 8,450.00 3025-U  

XAD-2 大孔树脂 25KG 40,300.00 3025-U  

particle size 20-60 mesh      

pore size ~0.65 mL/g pore volume      

  90 Å mean pore size      

surface area ~300 m2/g      

density 1.02 g/mL at 25 °C (true wet)(lit.)      

  用于分子量高达 20,000 的疏水性化合物的多环芳烃吸附剂树脂,具体用途包括酚类和有机物的去除,      

  表面活性剂、芳香化合物和抗生素的回收。可用作催化或金属去除的助剂。      

  中文名【CN】 英文名【US】 规格【S】 报价【Price】 货号【N】

XAD-4 大孔树脂 Amberlite® XAD4 100G 386 XAD4

XAD-4 大孔树脂 Amberlite® XAD4 500G 1,155.00 XAD4

XAD-4 大孔树脂 Amberlite® XAD4 1KG 2,119.00 XAD4

XAD-4 大孔树脂 Amberlite® XAD4 5KG 8,921.00 XAD4

XAD-4 大孔树脂 : Amberlite® XAD4 ——【编码:SIGMA-XAD4】    

CAS编号 37380-42-0  

别名 安伯莱特大孔树脂XAD-4,安伯莱特XAD4大孔树脂,XAD-4树脂,Amberlite XAD4 Macroporous Resin  

级别 科研级  

纯度&分析 Amberlite® XAD4:20-60 mesh  

Tips 此产品为非离子型大孔树脂,通过疏水性和极性相互作用来完成离子吸附与解吸,用途极为广泛。  

储存条件 常温避光保存。  

  matrix styrene-divinylbenzene  

particle size 20-60 mesh  

pore size ~0.98 mL/g pore volume  

  40 Å mean pore size  

surface area 725 m2/g  

density 1.02 g/mL (true wet)(lit.)  

   

中文名【CN】 规格【S】 报价【Price】 货号【N】  

XAD-7 大孔树脂 100G 378 XAD7  

XAD-7 大孔树脂 500G 1,186.00 XAD7  

XAD-7 大孔树脂 1KG 2,057.00 XAD7  

XAD-7 大孔树脂 5KG 8,639.00 XAD7  

   

Amberlite® XAD7HP:20-60 mesh    

Tips 此产品为非离子型大孔树脂,通过疏水性和极性相互作用来完成离子吸附与解吸,用途极为广泛  

particle size 20-60 mesh  

pore size 1.14 mL/g pore volume  

  90 Å mean pore size  

surface area ~450 m2/g  

  非离子型大网格树脂,通过疏水性和极性相互作用来完成离子吸附与解吸;通常用于等度条件下。

  可用于分子量高达 60,000 的化合物的弱极性吸附剂树脂,具体用途包括胰岛素、黄腐酸和腐殖化合物的吸附,

  干燥废弃物、有机物的去除和回收,以及抗生素的回收。  

中文名【CN】 英文名【US】 规格【S】 报价【Price】 货号【N】

DAX-8 大孔树脂 Supelite™ DAX-8 250G 798 21568-U

DAX-8 大孔树脂 Supelite™ DAX-8 500G 1,447.00 21568-U

DAX-8 大孔树脂 Supelite™ DAX-8 1KG 2,646.00 21568-U

DAX-8 大孔树脂 Supelite™ DAX-8 5KG 11,738.00 21568-U

DAX-8 大孔树脂 Supelite™ DAX-8 100KG 145,550.00 21568-U

  Supelite™ DAX-8:40-60 mesh  

Tips 具有中等极性的吸附树脂,用于吸附分子量高达 150,000 的化合物。  

matrix acrylic ester  

particle size 40-60 mesh  

pore size ~0.79 mL/g pore volume  

  225 Å mean pore size  

surface area 160 m2/g  

density 1.09 g/mL at 25 °C (true wet)(lit.)  

  具有中等极性的吸附树脂,用于吸附分子量高达 150,000 的化合物。  

  zui常用于吸附黄腐酸和腐殖酸、处理纸浆研磨废水以及去除样品中的醇类、表面活性剂和色素。

Amberlite XAD-2 大孔吸附树脂

PrimeSurface 低吸附细胞培养板 PrimeSurface 35mm dish

PrimeSurface 低吸附细胞培养板
PrimeSurface 35mm dish

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish低吸附相关试剂

PrimeSurface 低吸附细胞培养板



PrimeSurface® 是采用 sumiron 公司的低吸附蛋白质处理产品(Proteosave® SS)的技术制成的低吸附细胞处理产品。使用该容器培养细胞更容易形成细胞球集落。

◆特长


● 能够简单地形成细胞集落

      将细胞播种在96、384多孔板中,静置培养就能简单地得到细胞集落。 

● 细胞集落大小均一 

      抑制细胞吸附在培养面,集落的形成率得到了提高,能够在细胞形态平整、均一的状态下培养。

● 适用于细胞分化的研究 

      能够将ES细胞变成胚叶体(EB体)后直接添加分化诱导试剂 。

● 适合用于使用细胞球进行抗癌剂的筛选 

      进行3D培养,与常规的单层培养相比培养环境更加接近生物体。


PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish



◆用途


用于再生医疗和药物研发中

 


◆细胞培养

 

●    ES细胞·IPS细胞·骨髓间充质干细胞的分化诱导

●    使用细胞的3D模型进行药物研发筛选

 


◆产品概要

产品编号

产品名称

规格

培养面积

容量

包装

MS-9035XZ

PrimeSurface® 培养皿35mm

外寸35Φ×14(H)mm

9 cm2

5包·50/case

MS-9060XZ

PrimeSurface® 培养皿60mm

外寸60Φ×15(H)mm

21 cm2

10包·100/case

MS-9090XZ

PrimeSurface® 培养皿90mm

外寸90Φ×20(H)mm

57 cm2

10包·50/case

MS-9024XZ

 Sumiron Celltight 板24F

24孔·平底

1.8 cm2 

3.4 mL/well

1包·10/case


注:已进行放射线灭菌  保存温度:室温 有效期:制造后两年

 


产品编号

产品名称

孔数

孔底形状

容量

包装

MS-9384UZ

PrimeSurface® 384U多孔板

384

U底

0.1 mL

1/包・20/case

MS-9384WZ

PrimeSurface® 384U白色多孔板

384

U底

0.1 mL

1/包・20/case

MS-9096VZ

PrimeSurface® 96V多孔板

96

V底

0.3 mL

1/包・20/case

MS-9096MZ

PrimeSurface® 96M多孔板

96

纺锤底

0.2 mL

1/包・20/case

MS-9096UZ

PrimeSurface® 96U多孔板

96

U底

0.3 mL

1/包・20/case

MS-9096WZ

PrimeSurface® 96U白色多孔板

96

U底

0.3 mL

1/包・20/case


注:已进行放射线灭菌  保存温度:室温  有效期:制造后两年


<span style="font-family: 微软雅黑, "Microsoft YaHei"; font-size: 14px;"><span style="font-size: 14px; font-family: 微软雅黑, "Microsoft YaHei";"><span style="font-family: 微软雅黑, 'Microsoft YaHei'; font-size: 14px;">无标题文档</span></span></span>

◆实验例子


在用球体制作工程构建三维结构体时使用了 Cyfuse 的生物3D打印机 Regenova®

Regenova® 是先进的机器人系统之一,它通过将球体固定在剑山,再按照3D设计制作出三维结构体。下面为大家介绍使用了该系统的神经三维结构体和使用了间充质干细胞的三维结构体的实验例子。


神经三维结构体


使用细胞:人iPSC来源神经前驱细胞

播种数:4×104 cells/well

培养基:神经细胞用培养基

培养板培养天数:2天

制作出的三维结构体的形状、尺寸:3×3×2

用于三维结构体的细胞块个数:18个

积层后的培养天数:9天后拔出剑山


PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

细胞块

3D打印后

拔出剑山后的三维结构体

使用间充质干细胞的三维结构体


使用细胞:人脂肪组织来源间充质干细胞

播种数:5×103 cells/well

培养基:间充质干细胞用培养基

培养板培养天数:2天

制作出的三维结构体的形状、尺寸:用48个细胞块组成环状×10层

用于三维结构体的细胞块个数:480个

积层后的培养天数:6天后拔出剑山


PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

细胞块

3D打印后(上面)

3D打印后(侧面)

拔出剑山后

 


使用 PrimeSurface® 96U 多孔板的培养例子


小鼠ES细胞培养

 

播种数:750 cells/well
培养基:DMEM+4.5 mg/mL Glc.
添加物:15%灭活 FCS
              2 mM L-谷氨酰胺
              1%非必须氨基酸
              110 μM 2-巯基乙醇  
培养日数:3日

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

没有细胞吸附在 PrimeSurface® 96U 多孔板上,也没有凌乱的细胞集落,已经形成均一。

PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

一般市面上贩卖的漂浮培养用多孔板,细胞紧密粘附或者死亡。

使用PrimeSurface® 96U多孔板的细胞分化诱导实验例子


使用PrimeSurface® MS-9096V将人ES细胞集落导入自身组织化神经网膜组织

 

培养器:PrimeSurface® MS-9096V

使用细胞:人ES(KhES-1株)

播种密度:9000 cells/well

使用培养基:GMEM+KSR+NEAA+2ME+ 20uM Y-27632

培养条件:5% CO2,37℃


PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish


【数据提供】

・照片a)~c) 

 理化学研究所 发生与再生科学综合研究中心 干细胞研究支援开发室

 

【参考文献】

・Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs

 NakanoT, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y

 Cell Stem Cell, 10 (6), 771-785 (2012)

 


使用PrimeSurface® 进行抗癌药药效测试实验


细胞:MCF-7(人乳腺癌细胞)

试剂:5-Fluorouracil(5-FU)


PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish


【数据提供】

・近畿大学医学部 基因组生物学教室 西尾研究室



在小鼠 ES 细胞形成球体引起心肌细胞分化的过程中使用 DS Pharma Biomedical 的心肌分化毒性(发生毒性)评价试剂盒。


POCA® Hand1-EST


POCA® Hand1-EST 是一种使用 PrimeSurface,在待测物存在下的培养中将检测小鼠ES细胞的心肌分化是否正常作为标记基因活性的指标的方法。

 

使用细胞:小鼠ES细胞(Hand1-ES细胞)

播种数:750 cells/well

培养基:心肌分化培养基

培养板培养天数:5天


PrimeSurface 低吸附细胞培养板                              PrimeSurface 35mm dish

研究领域

使用型号

参考文献

视网膜

研究

MS-9096V

KUWAHARA, Atsushi, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nature communications, 2015, 6.: 1-15

MS-9096V

TANAKA, T., et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep, 2015, 5. 8344.

MS-9096U

EIRAKU, Mototsugu and SASAI, Yoshiki Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nature protocols,

2012, 7. 1: 69-79. 

MS-9096V

NAKANO, Tokushige, et al. Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs. Cell Stem Cell, 2012, 10. 6: 771-785.

 MS-9096V

GAO, Lixiong, et al. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells.Scientific Reports, 2016, 6.

神经科学

研究

MS-9096V

MUGURUMA, Keiko, et al. Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells. Cell Reports, 2015, 10:537-550

MS-9096V

BAMBA, Y., et al. Differentiation, polarization, and migration of human induced pluripotent stem cell-derived neural progenitor cells co-cultured with a human glial cell   line with radial glial-like characteristics. Biochem Biophys Res Commun,   2014, 447. 4: 683-688. 

MS-9096 U, M or V

MINAMINO, Yuki, et al. Isolation and Propagation of Neural Crest Stem Cells from Mouse Embryonic Stem Cells via Cranial Neurospheres. Stem cells and development, 2014, 24.2:   172-181

MS-9096V

KADOSHIMA, T., et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proceedings of the National Academy of Sciences of the United States of   America, 2013, 110. 50: 20284-20289. 

MS-9096 U, M or V

OGAWA, Yasuhiro, et al. Impaired neural differentiation of induced pluripotent stem cells generated from a mouse model of Sandhoff disease. PLoS ONE, 2013, 8. 1: e55856.

MS-9035X

GOMI, Masanori, et al. Functional recovery of the murine brain ischemia model using human induced pluripotent stem cell-derived telencephalic progenitors. Brain research, 2012, 1459. 52-60. 

MS-9096 U, M or V

NASU, Makoto, et al. Robust formation and maintenance of continuous stratified cortical   neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS ONE, 2012, 7. 12: e53024.

MS-9096 U

DANJO, T., et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. The Journal of neuroscience : the official journal of the Society   for Neuroscience, 2011, 31. 5: 1919-1933.

MS-9096 U

KANEMURA, Yonehiro Development of cell-processing systems for human stem cells (neural stem cells, mesenchymal stem cells, and iPS cells) for regenerative medicine. The   Keio journal of medicine, 2010, 59. 2: 35-45.

MS-9096 U, M or V

MS-9035X, MS-9060X

or

MS-9090X

FUKUSUMI, Hayato, et al. (2016). Establishment of human neural progenitor cells from human induced pluripotent stem cells with diverse tissue. Stem cells international: 1-10.

 MS-9096 U, M or V

RAASCH, Martin, et al. (2016). An integrative microfluidically supported in vitro model of an endothelial barrier combined with cortical spheroids simulates effects of neuroinflammation in neocortex development. Biomicrofluidics. 10: 044102.

MS-9096 M

ISODA, Miho, et al. (2016). Robust production of human neural cells by establishing neuroepithelial-like stem cells from peripheral blood mononuclear cell-derived feeder-free iPSCs under xeno-free conditions. Neuroscienc   Research.

MS-9035X, MS-9060X

or

MS-9090X

BAMBA, Yohei, et al. (2016). In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations. Molecular brain.

MS-9096V

SAKAGUCHI, Hideya, et al. (2015). Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nature communications. 6: 1-11.

MS-9096V

MUGURUMA, Keiko, et al. Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells. Cell Reports, 2015, 10:537-550

KAMIYA, Daisuke, et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature, 2011, 470. 7335: 503-509.

心肌细胞

研究和心脏研究

MS-9096V

TAKASHIMA, Yasuhiro, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell, 2014, 158. 6: 1254-1269.

MS-9035X

OTSUJI, Tomomi G, et al. Dynamic link between histone H3 acetylation and an increase in the functional characteristics of human ESC/iPSC-derived cardiomyocytes. PLoS ONE, 2012, 7. 9: e45010.

MS-9096U

SATOSHI, Yasuda, et al. AW551984: a novel regulator of cardiomyogenesis in pluripotent embryonic cells. Biochemical Journal, 2011, 437. 2: 345-355.

MS-9096U

YASUDA, S., et al. A novel regulator of cardiomyogenesis in pluripotent embryonic cells. The Biochemical journal, 2011, 437. 2: 345-355.

MS-9096U

OTSUJI, Tomomi G, et al. Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: Qualitative effects on electrophysiological responses to drugs. Stem cell research, 2010, 4. 3: 201-213.

MS-9035X, MS-9060X or MS-9090X

YAMAUCHI, Kaori, et al. Cardiomyocytes develop from anterior primitive streak cells induced by β‐catenin activation and the blockage of BMP signaling in hESCs. Genes to Cells, 2010, 15. 12: 1216-1227.

MS-9096V

GUO, Ge, et al. (2016). Naive pluripotent stem cells derived directly from isolated cells of the human innercell mass. Stem Cell Reports. 6: 437-446.

MS-9096 U

 MS-9035X, MS-9060X

or

MS-9090X

NOGUCHI, Ryo, et al. (2016). Development of a three-dimensional pre-vascularized scaffold-freecontractile cardiac patch for treating heart disease. The Journal of Heart and Lung Transplantation. 35: 137-145.

 MS-9096

NOGUCHI, Ryo, et al. Development of a Three-Dimensional Prevascularized Scaffold-Free Contractile Cardiac Patch for Treating Heart Disease. The Journal of Heart and Lung Transplantation, 2015,

肝细胞

研究

MS-9096 U, M or V

ISHII, Takamichi (2012).   Differentiation of Human Embryonic Stem Cells into Functional Hepatocyte-Like Cells (Method). Stem Cells and Cancer Stem Cells, Volume 2, Springer:   43-49. 

MS-9096 U, M or V

ISHII, Takamichi et al. (2012). Hepatic Maturation of hES Cells by Using a Murine Mesenchymal Cell Line Derived from Fetal Livers.Human Embryonic and Induced Pluripotent Stem Cells, Springer: 397-403.

MS-9096U

ISHII, Takamichi, et al. In vitro hepatic maturation of human embryonic stem cells by using a mesenchymal cell line derived from murine fetal livers. Cell and tissue research, 2010, 339. 3: 505-512. 

MS-9096U

YANAGIDA, Ayaka, et al. Liver maturation deficiency in p57 Kip2-/-mice occurs in a hepatocytic p57 Kip2 expression-independent manner. Developmental biology, 2015,

牙科

研究

MS-9035X, MS-9060X or MS-9090X

OZEKI, Nobuaki, et al. Differentiation of Human Skeletal Muscle Stem Cells into Odontoblasts Is Dependent on Induction of α1 Integrin Expression.Journal of Biological Chemistry, 2014, 289. 20: 14380-14391.

MS-9096 U, M or V

YAMAMOTO, Mioko, et al. Three-dimensional spheroid culture promotes odonto/osteoblastic differentiation of dental pulp cells.Archives of oral biology, 2014, 59. 3: 310-317.

生精小管

研究

MS-9096V

YOKONISHI, T., et al. In Vitro Reconstruction of Mouse Seminiferous Tubules Supporting Germ Cell Differentiation. Biol Reprod, 2013, 89. (1):15: 1–6.

iPS细胞

生成

MS-9035X

OHNISHI, Hiroe, et al. A comparative study of induced pluripotent stem cells generated from frozen, stocked bone marrow‐and adipose tissue‐derived mesenchymal stem cells. Journal of tissue engineering and regenerative medicine, 2012, 6. 4: 261-271. 1. 

MS-9035X

AOKI, T., et al. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue engineering. Part A, 2010, 16. 7: 2197-2206.

MS-9035X, MS-9060X or MS-9090X

ODA, Y., et al. Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem, 2010, 285. 38: 29270-29278.

OHNISHI, Hiroe, et al. Generation of Xeroderma Pigmentosum-A Patient-Derived Induced Pluripotent Stem Cell Line for Use As Future Disease Model. Cellular Reprogramming (Formerly" Cloning and Stem Cells"), 2015, 17. 4: 268-274.

EST(胚胎干细胞试验)

MS-9096W

SUZUKI, N., et al. Evaluation of novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Toxicological sciences : an official journal of the Society of Toxicology, 2011, 124. 2: 460-471.

MS-9096U

NAGAHORI, H., et al. (2016). Prediction of in vivo developmental toxicity by combination of Hand1-Luc embryonic stem cell test and metabolic stability test with clarification of metabolically inapplicable candidates. Toxicol Lett. 259: 44-51.

 MS-9096U

YU, Ruoxing, et al. (2015). A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs on Early Embryogenesis. PLoS ONE. 10: e0145286.

MS-9096W

COZ, Florian Le, et al. (2015). Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST): A novel rapid and highly reproducible in vitro test for embryotoxicity by measuring cytotoxicity and differentiation toxicity using engineered mouse ES cells. The Journal of Toxicological Sciences. 40: 251-261.

骨和软骨研究

MS-9096 U

HINO, Kyosuke, et al. (2015). Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proceedings ofthe National Academy of Sciences. 112: 15438-15443.

MS-9096 U, M or V

MURATA, Daiki, et al. A preliminary study of osteochondral regeneration using a  scaffold-free threedimensional construct of porcine adipose tissue-derived mesenchymal stem cells. Journal of orthopaedic surgery and research, 2015, 10. 1: 1-12.

 MS-9096 U, M or V

FUJIMOTO, Mai, et al. Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochemical and Biophysical Research Communications,

2014, 455. 3: 347-352. 1.

MS-9096 U

ISHIHARA, Kohei, et al. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res, 2014, 9. 1: 98. 1.

血管

研究

 MS-9096 U

MS-9035X, MS-9060X

or

MS-9090X

KAGEYAMA, Tatsuto, et al. (2016). In situ crosslinkable gelatin-CMC hydrogels designed for rapid engineering of perfusable vasculatures. ACS Biomaterials Science & Engineering.

MS-9096U

ITOH, M., et al. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae.PLoS ONE,

2015, 10. 9: e0136681.

胰岛细胞移植

MS-9096 U

NAKAMURA, Kentaro, et al. (2016). Introduction to a new cell transplantation platform via recombinant peptide petaloid pieces and its application to islet transplantation with mesenchymal stem cells. Transplant International. 29: 1039-1050.

骨髓

研究

 MS-9096 U

SAYO, Kanae, et al. (2016). Fabrication of bone marrow-like tissue in vitro from dispersed-state bone marrow cells. Regenerative Therapy. 3: 32-37.

其它

MS-9035X, MS-9060X

or

MS-9090X

ITO, Yoshitaka, et al. (2015). Establishment of Tsc2deficient rat embryonic stem cells. International journal of oncology. 46: 1944-1952.

 MS-9096 U, M or V

OGAWA, Yasuhiro, et al. (2015). Induced Pluripotent Stem Cells Generated from P0-Cre; Z/EG Transgenic Mice. PLoS ONE. 10: e0138620.

MS-9096U

IMAI, Hiroyuki, et al. Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers. PLoS ONE, 2015, 10. 6: e0130585.

MS-9096U, MS-9096M

or

MS-9096V

MITSUI, Kaoru, et al. Conditionally replicating adenovirus prevents pluripotent stem cell–derived teratoma by specifically eliminating undifferentiated cells. Molecular Therapy. Methods & Clinical Development, 2015, 2. 15026.

MS-9096U

ZHOU, Yuanshu, et al. Metabolic suppression during mesodermal differentiation of embryonic stem cells identified by single-cell comprehensive gene expression analysis. Molecular BioSystems, 2015, 11. 9: 2560-2567.

PrimSurface® 肿瘤研究参考文献


  1. 

ROTEM, Asaf, et al. Alternative to the soft-agar assay that permits high-throughput   drug and genetic screens for cellular transformation. Proceedings of the National Academy of Sciences, 2015, 1-6

  2.

OHNISHI, Ken, et al. Plastic induction of CD133AC133-positive cells in the microenvironment of glioblastoma spheroids.International Journal of Oncology, 2014, 45.2: 581-586.

  3.

KODAMA, Tatsushi, et al. A Novel Mechanism of EML4-ALK Rearrangement Mediated by Chromothripsis in a Patient-Derived Cell Line. Journal of Thoracic Oncology, 2014, 9.11: 1638-1646.

  4.

SHIMOZATO, O., et al. Receptor-type protein tyrosine phosphatase κ directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene, 2014.

  5.

MIKHAIL, Andrew S., et al. Image-based analysis of the size-and time-dependent penetration of polymeric micelles in multicellular tumor spheroids and tumor xenografts. International journal of pharmaceutics, 2014, 464.1: 168-177.

  6.

MORI, Masamichi, et al. The Selective Anaplastic Lymphoma Receptor Tyrosine Kinase Inhibitor ASP3026 Induces Tumor Regression and Prolongs Survival in Non–Small Cell Lung Cancer Model Mice. Molecular cancer therapeutics, 2014, 13.2: 329-340.

  7.

AKIMOTO, Miho, et al. An inhibitor of HIF-α subunit expression suppresses hypoxia-induced dedifferentiation of human NSCLC into cancer stem cell-like cells. World, 2013, 3.4: 41-45.

  8.

GOUDARZI, Houman, et al. Hypoxia affects in vitro growth of newly established cell lines from patients with malignant pleural mesothelioma. Biomedical Research, 2013, 34.1:   13-21.

  9.

KATO, Takuma; TANAKA, Masakazu; OBA, Makoto. Protein Transfection Study Using Multicellular Tumor Spheroids of Human Hepatoma Huh-7 Cells. PloS one, 2013, 8.12: e82876.

10.

MIKHAIL, Andrew S.; EETEZADI, Sina; ALLEN, Christine. Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: A comparison of docetaxel-loaded block copolymer   micelles and Taxotere®.PloS one, 2013, 8.4: e62630.

11.

SATO, Shuji, et al. Identification of the cancer cell proliferation and survival functions of proHB-EGF by using an anti-HB-EGF antibody. PloS one, 2013, 8.1: e54509.

12.

ISHII, Genichiro, et al. Morphophenotype of floating colonies derived from a single cancer cell has a critical impact on tumor‐forming activity. Pathology international, 2013, 63.1: 29-36.

13.

OYANAGI, Jun, et al. Epithelial-mesenchymal transition stimulates human cancer cells   to extend microtubule-based invasive protrusions and suppresses cell growth in collagen gel. PloS one, 2012, 7.12: e53209.

14.

UNO,   Makiko, et al. Identification of physiologically active substances as novel ligands for MRGPRD. BioMed Research International, 2012, 2012.

15.

KONISHI, Hiroaki, et al. PEGylated liposome IHL-305 markedly improved the survival of ovarian cancer peritoneal metastasis in mouse. BMC cancer, 2012, 12.1: 462.

16.

NISHIMURA, Satoko, et al. MRGD, a MAS-related G-protein coupled receptor, promotes tumorigenisis and is highly expressed in lung cancer. PloS one, 2012, 7.6: e38618.

17.

SAKAMOTO, Hiroshi, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer cell, 2011, 19.5: 679-690.

18.

KUNITA, Akiko, et al. Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. The American journal of pathology, 2011, 179.2: 1041-1049.

19.

SAKUMA, Yuji, et al. WZ4002, a third-generation EGFR inhibitor, can overcome anoikis resistance in EGFR-mutant lung adenocarcinomas more efficiently than Src inhibitors. Laboratory Investigation, 2011, 92.3: 371-383.

20.

SHIMIZU, Yutaka, et al. Dienogest, a synthetic progestin, inhibits prostaglandin E2 production and aromatase expression by human endometrial epithelial cells in a spheroid culture system. Steroids, 2011, 76.1: 60-67.

21.

KOSHIKAWA, Naohiko, et al. Proteolytic activation of heparin‐binding EGF‐like growth factor by membrane‐type matrix metalloproteinase‐1 in ovarian carcinoma cells. Cancer science, 2011, 102.1: 111-116.

22.

SAKAMOTO, Hiroshi, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer cell, 2011, 19.5: 679-690.

23.

YAMAGUCHI,   Shigeru, et al. Novel Photodynamic Therapy Using Water‐dispersed TiO2–Polyethylene Glycol Compound: Evaluation of Antitumor Effect on Glioma Cells and Spheroids In Vitro. Photochemistry and photobiology,   2010, 86.4: 964-971.

24.

MATSUYAMA, Masahiro, et al. Reduced CD73 expression and its association with altered purine nucleotide metabolism in colorectal cancer cells robustly causing liver metastases. Oncology letters, 2010, 1.3: 431-436.

25.

KOGASHIWA, Yasunao, et al. Docetaxel suppresses invasiveness of head and neck cancer cells in vitro. Cancer science, 2010, 101.6: 1382-1386.

26.

HAN, Muri, et al. Enhanced percolation and gene expression in tumor hypoxia by PEGylated polyplex micelles. Molecular Therapy, 2009, 17.8: 1404-1410.

27.

WATANABE, Y., et al. A novel translational approach for human malignant pleural mesothelioma: heparanase-assisted dual virotherapy. Oncogene, 2009, 29.8: 1145-1154.

28.

KUNITA, Akiko, et al. The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. The American journal of pathology,   2007, 170.4: 1337-1347.

29.

HAN,  Muri, et al. Transfection study using multicellular tumor spheroids for screening non-viral polymeric gene vectors with low cytotoxicity and high transfection efficiencies. Journal of Controlled Release, 2007, 121.1: 38-48.

30.

KESSEL, Sarah, et al. (2016). High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry. Journal of laboratory automation: 2211068216652846.

31.

OZAWA, Masayuki (2015). The N-cadherin cytoplasmic domain confers anchorage-independent growth and the loss of contact inhibition. Scientific Reports. 5: 1-16.

32.

TARIQ, Mohammad, et al. (2016). Eukaryotic translation initiation factor 5A (eIF5A) is essential for HIF-1α activation in hypoxia. Biochemical and Biophysical Research Communications. 470: 417-424.

33.

TERASHIMA, Jun, et al. (2016). VEGF expression is regulated by HIF-1α and ARNT in 3D KYSE-70, esophageal cancer cell spheroids. Cell biology international.

34.

MASUDA, Mari, et al. (2016). TNIK inhibition abrogates colorectal cancer stemness. Nature communications. 7: 12586.

35.

SUDA, Yoshitaka, et al. (2016). Clonal heterogeneity in osteogenic potential of lung cancer-associated fibroblasts: promotional effect of osteogenic progenitor cells on cancer cell migration. Journal of cancer research and clinical oncology: 1-12.

36.

EETEZADI, Sina, et al. (2015). Effects of Doxorubicin Delivery Systems and Mild Hyperthermia on

Tissue Penetration in 3D Cell Culture Models of Ovarian Cancer Residual Disease. Molecular pharmaceutics. 12: 3973-3985.

37.

MISU, Masayasu, et al. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells.Biochemical and Biophysical Research Communications, 2015, 463. 4: 618-623.

38.

NAKANISHI, Yoshito, et al. Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3– BAIAP2L1.Molecular cancer therapeutics, 2015, 14. 3: 704-712.

39.

NOZAWA-SUZUKI, Noriko, et al. The inhibitory effect of hypoxic cytotoxin on the expansion of cancer stem cells in ovarian cancer.Biochemical and Biophysical Research Communications, 2015, 457. 4: 706-711.

40.

YONESAKA, Kimio, et al. (2015). The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer. Oncotarget.    6: 33602.

41.

YONESAKA, K, et al. Anti-HER3 monoclonal antibody patritumab sensitizes refractory non-small cell lung cancer to the epidermal growth factor receptor inhibitor erlotinib.Oncogene, 2015

42.

YOSHIDA, Ryohei, et al. EGFR tyrosine kinase inhibitors combined with cytotoxic drugs for treatment of NSCLC with EGFR gene mutations: Efficacy and mechanisms.Cancer research, 2015, 75. 15 Supplement: 3501-3501.

43.

KODAMA, Tatsushi, et al. Alectinib shows potent antitumor activity against RET-rearranged non–small cell lung cancer.Molecular cancer therapeutics, 2014, 13. 12: 2910-2918.

44.

寺島潤 (2014). 肝がん 3D 細胞塊における薬物代謝酵素の不均一な発現. バイオテック 2014.

45.

中野洋文 難治性癌・癌肝細胞の三次元培養薬剤スクリーニング.Bio Garage, 2014, 22. 13.

46.

BRESLIN, Susan and O’DRISCOLL, Lorraine Three-dimensional cell culture: the missing link in drug discovery.Drug Discovery Today, 2013, 18. 5: 240-249.

47.

ISHII, Genichiro, et al. Morphophenotype of floating colonies derived from a single cancer cell has a critical impact on tumor-forming activity.Pathology International, 2013, 63. 1: 29-36.

48.

KATO, Takuma, et al. Protein Transfection Study Using Multicellular Tumor Spheroids of Human Hepatoma Huh-7 Cells.PLoS ONE, 2013, 8. 12: e82876.

49.

KESSEL, Sarah, et al. (2013). Progressing 3D Spheroid Analysis into a HTS Drug Discovery Method. Molecular biology of the cell, AMER SOC CELL BIOLOGY 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA.

50.

MASUDA, Taisuke, et al. A microfabricated platform to form three-dimensional toroidal multicellular aggregate.Biomedical microdevices, 2012, 14. 6: 1085-1093.

51.  

KOSHIKAWA, Naohiko, et al. Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells.Cancer science, 2011, 102. 1: 111-116.

PrimSurface® 其他领域参考文献

1.

TAKASHIMA,   Yasuhiro, et al. Resetting transcription factor control circuitry toward   ground-state pluripotency in human. Cell, 2014, 158. 6: 1254-1269.   [MS-9096V]

2.

KIMURA,   Kenichi, et al. The Role of CCL5 in the Ability of Adipose Tissue-Derived   Mesenchymal Stem Cells to Support Repair of Ischemic Regions. Stem cells and development, 2013, 23. 5: 488-501. [MS-9096U]

3.

SHIMOTO,   Takeshi, et al. (2013). Bio Rapid Prototyping Project: Development of   Spheroid Formation System for Regenerative Medicine. Information Technology Convergence,   Springer: 855-862. [MS-9096 U, M or V]

4.

KOIDE,   Naoshi, et al. Establishment and optimal culture conditions of   microRNA-induced pluripotent stem cells generated from HEK293 cells via   transfection of microRNA-302s expression vector. Nagoya journal of medical science,   2012, 74. 1-2: 157-165. [MS-9096 U, M or V]

5.

MARKS, H., et al. The transcriptional and epigenomic foundations of ground state   pluripotency. Cell, 2012, 149. 3: 590-604. [MS-9096U]

6.

OHNISHI,   Hiroe, et al. (2012). Human Mesenchymal Stem Cells and iPS Cells (Preparation   Methods). Human Embryonic   and Induced Pluripotent Stem Cells, Springer:   173-190. [MS-9035X, MS-9060X or MS-9090X]

7.

SAKAI,   Yusuke, et al. Embryoid body culture of mouse embryonic stem cells using   microwell and micropatterned chips. Journal of bioscience and bioengineering, 2011, 111. 1: 85-91. [MS-9096U]

8.

TAKAYAMA,   Yuzo, et al. Toward the Precise Control of Cell Differentiation Processes by   Using Micro and Soft Lithography. 2011, [MS-9096 U, M or V]

9.

TAKAYAMA,   Yuzo, et al. Simultaneous induction of calcium transients in embryoid bodies   using microfabricated electrode substrates. Journal of bioscience and bioengineering, 2011, 112. 6: 624-629. [MS-9096U]

10.  

TANASIJEVIC,   Borko and RASMUSSEN, Theodore P X chromosome inactivation and differentiation   occur readily in ES cells doubly-deficient for macroH2A1 and macroH2A2. PLoS ONE, 2011, 6. 6: e21512. [MS-9096U]

11.

KATAOKA,   Ken, et al. Internalization of REIC/Dkk-3 protein by induced pluripotent stem   cell-derived embryoid bodies and extra-embryonic tissues. Int J Mol Med, 2010, 26. 6: 853-859.   [MS-9096U]

12.

TAKAYAMA,   Yuzo, et al. (2009). Ensemble   stimulation of embryoid bodies using microfabricated ITO substrates. Engineering in Medicine and Biology Society, 2009. EMBC 2009.   Annual International Conference of the IEEE, IEEE. [MS-9096U]

13.

TAKAYAMA,   Yuzo, et al. Ensemble Stimulation of Embryoid Bodies using Substrate‐Embedded   Electrodes. IEEJ   Transactions on Electrical and Electronic Engineering, 2009, 4. 6: 734-735. [MS-9096U]

14.

ICHIOKA, Masayuki, et al. Dienogest, a synthetic progestin, down-regulates expression of CYP19A1 and inflammatory and neuroangiogenesis factors through progesterone receptor isoforms A and B in endometriotic cells. The Journal of steroid biochemistry and molecular biology, 2015, 147. 103-110.

15.

MORI, Taisuke, et al. Dienogest reduces HSD17β1 expression and activity in endometriosis. Journal of Endocrinology, 2015, 225. 2: 69-76. PARSONS, Matthew W, et al. Dectin-2 Regulates the Effector Phase of House Dust Mite–Elicited Pulmonary Inflammation Independently from Its Role in Sensitization. The Journal of Immunology, 2014, 192. 4: 13611371.

16.

BRESLIN, Susan and O’DRISCOLL, Lorraine Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today, 2013, 18. 5: 240-249.

17.

BARRETT, Nora A, et al. Cysteinyl leukotriene 2 receptor on dendritic cells negatively regulates liganddependent allergic pulmonary inflammation. The Journal of Immunology, 2012, 189. 9: 4556-4565.

18.

MASUDA, Taisuke, et al. A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Biomedical microdevices, 2012, 14. 6: 1085-1093.

19.

SOMA, Tsutomu, et al. Hair-inducing ability of human dermal papilla cells cultured under Wnt/β-catenin signalling activation. Experimental dermatology, 2012, 21. 4: 307-309.

20.

YAMANAKA, Kaoruko, et al. Dienogest inhibits aromatase and cyclooxygenase-2 expression and prostaglandin E2 production in human endometriotic stromal cells in spheroid culture. Fertil Steril, 2012, 97. 2: 477-482.

21.

BRENNAN, Patrick J, et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nature immunology, 2011, 12. 12: 1202-1211.

22.

YOSHIIKE, Yuka and KITAOKA, Takuya Tailoring hybrid glyco-nanolayers composed of chitohexaose and cellohexaose for cell culture applications. Journal of Materials Chemistry, 2011, 21. 30: 11150-11158.

23.

MAEKAWA, Akiko, et al. GPR17 regulates immune pulmonary inflammation induced by house dust mites. The Journal of Immunology, 2010, 185. 3: 1846-1854.

24.

TAMADA, Atsushi, et al. Autonomous right-screw rotation of growth cone filopodia drives neurite turning. The Journal of Cell Biology, 2010, 188. 3: 429-441.

25.

IJIMA, Hiroyuki, et al. Composition of culture medium is more important than co-culture with hepatic nonparenchymal cells in albumin production activity of primary rat hepatocytes, and the effect was enhanced by hepatocytes spheroid culture in collagen gel. BIOCHEMICAL ENGINEERING JOURNAL, 2009, 45. 3: 226231.

26.

ITO, Michiko and TAGUCHI, Tetsushi Enhanced insulin secretion of physically crosslinked pancreatic β-cells by using a poly (ethylene glycol) derivative with oleyl groups. Acta Biomater, 2009, 5. 8: 2945-2952. KATAOKA, M, et al. Detection of biomarker for periodontal disease using a microchip.2008, 

2018年的参考文献 (46)

1.

K. Tsuji-Tamura, et al, Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization andimpairs endothelial cell elongation. Biochemical and Biophysical Research Communications, 2018, 497.1.:326-331  [MS-9096U]

2.

R. Akizukia, et al, Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, 2018, 1865.5.:769-780 [MS-9096U]

3.

E. C. Costa, et al, Spheroids Formation on Non‐Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches. Biotechnology Journal (Special Issue: Biotech Methods and Advances), 2018, 13.1 [MS-9096U

4.

Y Fukuda-Takami, et el, Layer-by-layer cell coating technique using extracellular matrix facilitates rapid fabrication and function of pancreatic β-cell spheroids. Biomaterials. 2018, 160.:82-91 [MS-9096U]

5.

R. Maruhashia, et el, Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 2018, 1865.3.:470-479 [MS-9096U]

6.

J. Terashima, The regulation mechanism of AhR activated by benzo[a]pyrene for CYP expression are different between 2D and 3D culture of human lung cancer cells. Drug Metabolism and Pharmacokinetics, 2018 [MS-9096V]

7.

H. Yamamoto, et el, Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors. Journal of Bioscience and Bioengineering, 2018, 125.1.:131-139  [ MS-9096 U, M or V ]

8.

S. Sai, et el, Effects of carbon ion beam alone or in combination with cisplatin on malignant mesotheliomacells in vitro. Oncotarget, 2018, 9.19.:14849-1486 [MS-9096U]

9.

E. Takada, et el, Reproduction of Characteristics of Extracellular Matrices in Specific Longitudinal Depth ZoneCartilage within Spherical Organoids in Response to Changes in Osmotic Pressure. International Journal ofMedical Sciences, 2018, 19.5.:1507 [MS-9096U]

10.

D. Murata, Osteochondral Regeneration with a Scaffold-Free Three-Dimensional Construct of AdiposeTissue-Derived Mesenchymal Stromal Cells in Pigs. Tissue Engineering and Regenerative Medicine, 2018,15.1.:101-113 [MS-9096U]

11.

F, Chisa Yoshimuraa, et el, Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine. Biomaterials, 2018, 154.: 291-30

12.

Daisuke Taniguchi, et el, Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interactive CardioVascular and Thoracic Surgery, 2018, 26.5.:745-752 [MS-9096U]

13.

Michael Dunne, et el, Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. Journal of Controlled Release, 2018, 282.28.: 35-45 [MS-9096]

14.

Wenjie Wang, et el, Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction. Redox Biology, 2018, 15.:253-265 [ MS-9096 U, M or V ]

15.

Xiu-Ying Zhang, et el, Regeneration of diaphragm with bio-3D cellular patch. Biomaterials, 2018.167.:1-14 [MS-9096U]

16.

Kaori Yamauchi, et el, Isolation and characterization of ventricular-like cells derived from NKX2-5eGFP/w and MLC2vmCherry/w double knock-in human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2018, 495.1.:1278-1284 [MS-9096U]

17.

Yoko Sawada, et el, Ajuga decumbens stimulates mesenchymal stem cell differentiation and regenerates cartilage in a rabbit osteoarthritis model. Experimental and TherapeuticMedicine, 2018. 15.5

18.

Kazuhiko Iikubo, et el, Discovery of N-{2-Methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}- N′-[2-(propane-2-sulfonyl)phenyl]-1,3,5-triazine-2,4-diamine (ASP3026), a Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor. Chemical and Pharmaceutical Bulletin, 2018.66.3.:251-262

19.

Toshiyuki Sumi, et el, Survivin knockdown induces senescence in TTF1-expressing, KRAS-mutant lung adenocarcinomas. International Journal of Oncology, 2018. 53.1 [MS-9096U]

20.

Yu Nakano, et el, Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells. Cytotechnology, 2018, 70.3.:975-982

21.

Takahashi, Yoshinobu, et el, Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation. Cell Reports, 208, 23.6.:1620-1629 [MS-9096U]

22.

Luqi Wang, et el, Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling. International Journal of Oncology, 2018, 52.5 [MS-9096U]

23.

Akira Igarashi, et el, Mast cells derived from human induced pluripotent stem cells are useful for allergen tests. Allergology International, 2018. 67.:234-242 [MS-9024X]

24.

Lauren M. Watson, et el, A Simplified Method for Generating Purkinje Cells from Human-Induced Pluripotent Stem Cells. The Cerebellum, 2018, 17.4.:419-427 [MS-9096V]

25.

Tokuhiro Chano, et el, Prominent role of RAB39A-RXRB axis in cancer development and stemness. Oncotarget, 2018, 9.11.:9852-9866

26.

Daisuke Watanabe, et el, The Generation of Human γδ T Cell‐Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture. Pluripotent Stem Cells, 2018, 7.1.34-44 [MS-9096M]

27.

Wataru Kobayashi, et el, Culture Systems of Dissociated Mouse and Human Pluripotent Stem Cell–Derived Retinal Ganglion Cells Purified by Two-Step Immunopanning. Investigative Opthamology & Visual Science, 2018, 59.2.:776-787 [MS-9096U & MS-9090XZ]

28.

Shin-Ichi Mae, et el, Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2018, 495.1.:954-961 [ MS-9096 U, M or V ]

29.

JunTerashima, et el, CYP1A1 and CYP1A2 expression levels are differentially regulated in three-dimensional spheroids of liver cancer cells compared to two-dimensional monolayer cultures. Drug Metabolism and Pharmacokinetics, 2018, 30.6.:434-440 [MS-9096U]

30.

Toshiki Kato, et el, Elevated Expression of Dkk-1 by Glucocorticoid Treatment Impairs Bone Regenerative Capacity of Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells and Development, 2018, 27.2

31.

Sina Eetezadi, et el, Ratio-Dependent Synergism of a Doxorubicin and Olaparib Combination in 2D and Spheroid Models of Ovarian Cancer. American Chemical Society, 2018, 15.2.:472-485

32.

Chul Jang Kim, et el, Anti-oncogenic activities of cyclin D1b siRNA on human bladder cancer cells via induction of apoptosis and suppression of cancer cell stemness and invasiveness. International Journal of Oncology, 2018, 52.1.:231-240

33.

Emi Sano, et el, Engineering of vascularized 3D cell constructs to model cellular interactions through a vascular network. Biomicrofluidics, 2018, 12.4

34.

Hiroto Fujii, et el, Compact Seahorse‐Shaped T Cell–Activating Antibody for Cancer Therapy. Advanced Therapeutics, 2018, 1.3

35.

Kenichiro Ishii, et el, Additive naftopidil treatment synergizes docetaxel-induced apoptosis in human prostate cancer cells. Journal of Cancer Research and Clinical Oncology, 2018, 1.3

36.

Anju Dang, et el, Brightfield and Fluorescence Imaging using 3D PrimeSurface® Ultra-Low Attachment Microplates. The Journal of Immunology, 2018, 200.1

37.

Yulius Hermanto, et el, Transplantation of feeder‐free human induced pluripotent stem cell–derived cortical neuron progenitors in adult male Wistar rats with focal brain ischemia. Journal of Nueroscience Research, 2018, 96.5.:863-874

38.

Reiko Iwazawa, et el, The Therapeutic Effects of Adipose-Derived Stem Cells and Recombinant Peptide Pieces on Mouse Model of DSS Colitis, 2018 [MS-9096U]

39.

Yukimasa Makita, et el, Antitumor activity of kinetochore-associated protein 2 siRNA against lung cancer patient-derived tumor xenografts. Oncology Letters, 2018 [MS-9096U]

40.

T. Sakabe, et el, Transcription factor scleraxis vitally contributes to progenitor lineage direction in woundhealing of adult tendon in mice. Journal of Biological Chemistry, 2018, 293.16.:5766-5780

41.

K. Ogawa, et el, Vasopressin-secreting neurons derived from human embryonic stem cells through specificinduction of dorsal hypothalamic progenitors. Scientific Reports, 2018, 8.3615 [MS-9096V] [MS-9096M]

42.

村田大紀 , et el, 脂肪組織由来間葉系幹細胞の三次元構造体による骨軟再生. Clinical Orthopedic Surgery,  2018, 53. 1

43.

K. Iikubo, et el, Discovery of N-{2-Methoxy-4-[4-(4-methylpiperazin-1-yl) piperidin-1-yl] phenyl}-N′-[2-(propane-2-sulfonyl) phenyl]-1, 3, 5-triazine-2, 4-diamine (ASP3026), a Potent and Selective AnaplasticLymphoma Kinase (ALK) Inhibitor. Chemical and Pharmaceutical Bulletin, 2018, 66.3.:251-262

44.

A. D. Silva, et el, Surface modification using the biomimetic method in alumina‐zirconia porous ceramicsobtained by the replica method. Journal of Biomedical Materials Research, 2018

45.

Y. Fukuda, et el, Layer by layer cell coating technique using extracellular matrix facilitates rapid fabricationand function of pancreatic β-cell spheroids. Biomaterials, 2018, 160.:82-91 [MS-9096U]

46.

M. G. Murrali, et el, 13 C APSY-NMR for sequential assignment of intrinsically disordered proteins. Journalof Biomolecular NMR, 2018, 70.3.:167-175

2017年的参考文献 (50)


1.

W. Wang, et al. Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction. Redox Biology, 2017,15.: 253-265 [MS-9096U]

2.

M. Tamura, et al. Morphology-based optical separation of subpopulations from a heterogeneous murine breast cancer cell line. PLOS|One, 2017 [MS-9096V]

3.

T. Suzuki, et al. Quantitative visualization of synchronized insulin secretion from 3D-cultured cells.Biochemical and Biophysical Research Communications, 2017, 485.4:253-265 [MS-9096U]

4.

A. G. Smith, et al. Epigenetic resetting of human pluripotency. Development, 2017, 144.15: 2748–2763 [MS-9096V]

5.

M. Sato-Nakai, et al, Metabolites of alectinib in human: their identification and pharmacological activity.Heliyon, 2017, 3.7 [MS-9096U]

6.

 N. Sano, et al, Enhanced axonal extension of subcortical projection neurons isolated from murine embryonic cortex using neuropilin-1. Frontiers in Cellular Neuroscience, 2017, 11.123 [MS-9096U]

7.

M. Sano, et al, Induction of cell death in pancreatic ductal adenocarcinoma by indirubin 3′-oxime and 5-methoxyindirubin 3′-oxime in vitro and in vivo. Cancer Letters, 2017, 11.123 [MS-9096U]

8.

S. Quader, et al, cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. Journal of Controlled Release, 2017, 258: 56-66 [MS-9096U]

9.

Y. Ogawa, et al, Abnormal differentiation of Sandhoff disease model mouse-derived multipotent stem cells toward a neural lineage. PLOS|One, 2017 [MS-9096U]

10.

K. Miyano, et al, cRGD peptide installation on cisplatin-loaded nanomedicines enhances efficacy against locally advanced head and neck squamous cell carcinoma bearing cancer stem-like cells. Journal of Controlled Release, 2017, 261: 275-286 [ MS-9096 U, M or V ]

11.

M. Kucinska, et al, Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutation Research/Reviews in Mutation Research,2017, 772: 242-262 [ MS-9096 U, M or V ]

12.

S. Kessel, et al, High-Throughput 3D tumor spheroid screening method for cancer drug discovery using Celigo image cytometry. Micro- and Nanotechnologies for Quantitative Biology and Medicine, 2017, 22.4.:454-465 [MS-9096U and MS-9384U]

13.

S.-i. Ito, et al, Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids. Stem Cell Research, 2017, 24.: 94-101 [MS-9090X]

14.

R. Ishida, et al, The Tissue-Reconstructing Ability of Colon CSCs Is Enhanced by FK506 and Suppressed by GSK3 Inhibition. Molecular Cancer Research, 2017, 15.10 [MS-9024X]

15.

A. Igarashi, et al, Mast cells derived from human induced pluripotent stem cells are useful for allergen tests. Allergology International, 2017, 67.2.: 234-242 [MS-9024X]

16.

Y. Fujita, et al, KH-type splicing regulatory protein is involved in esophageal squamous cell carcinoma progression. Oncotarget, 2017, 8.60 [MS-9096U]

17.

D. Diekjürgen, et al, Polysaccharide matrices used in 3D in vitro cell culture systems. Biomaterials, 2017,141.:96-115 [ MS-9096 U, M or V ]

18.

E. C. Costa, et al, Spheroids formation on non‐adhesive surfaces by Liquid Overlay Technique:considerations and practical approaches. Biotechnology Journal: Special Issue: Biotech Methods andAdvances, 2017, 13.1 [ MS-9096 U, M or V ]

19.

Y. Bamba, et al, Visualization of migration of human cortical neurons generated from induced pluripotent stem cells. Journal of Neuroscience Methods, 2017, 289.: 57-63 [MS-9096V]

20.

H. Ogawa, et al, Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stemcells. Scientific Reports, 2017, 7.12317 [MS-9024X]

21.

T. Hiragi, et al, Differentiation of Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons in Mouse Hippocampal Slice Cultures. frontiers in Cellular Neuroscience, 2017,11.143 [MS-9035X, MS-9060X, or MS-9090X]

22.

H. Jung, et al, Development of flexible nanocarriers for siRNA delivery into tumor tissue. International Journal of Pharmaceutics, 2017, 516.1-2.:258-265

23.

M. Ikeda, et al, Dormant pluripotent cells emerge during neural differentiation of embryonic stem cells in a FoxO3-dependent manner. Molecular and Cellular Biology, 2017, 37.5 [ MS-9096 U, M or V ]

24.

K. Sawada, et al, Vitamin D receptor agonist VS-105 directly modulates parathyroid hormone expression inhuman parathyroid cells and in 5/6 nephrectomized rats. The Journal of Steroid Biochemistry and MolecularBiology, 2017, 167.:48-54 [MS-9096U and MS-9024X]

25.

H. Katayama, et al, Generation of non-viral, transgene-free hepatocyte like cells with piggyBac transposon.Scientific Reports, 2017, 7 [ MS-9096 U, M or V ]

26.

J. Kawada, et al, Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons. Stem CellReports, 2017 [MS-9096V]

27.

M. Fukuhara, et al, A G-quadruplex structure at the 5′ end of the H19 coding region regulates H19 transcription. Scientific Reports, 2017, 7 [ MS-9096 U, M or V ]

28.

D. Yahia, et al, Cytotoxic activity of fumonisin B 1 in Vero cells: comparison between 2D and 3D structural microplates. Comparative Clinical Pathology, 2017, 26.3.: 561-568 [ MS-9096 U, M or V ]

29.

S. Tsubota, et al, PRC2-mediated transcriptomic alterations at the embryonic stage govern tumorigenesis and clinical outcome in MYCN-driven neuroblastoma. Cancer Research, 2017, 77.19 [ MS-9096 U, M or V ]

30.

 Y. Takechi-Haraya, et al, Control of Liposomal Penetration into Three-Dimensional Multicellular. Molecular Pharmaceutics, 2017, 14.6.: 2158-2165 [ MS-9096 U, M or V

31.

K. Muguruma, 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer. Organ Regeneration, 2017, 31-41 [ MS-9096 U, M or V

32.

L. Li, et al, 3D High-Content Screening of Organoids for Drug Discovery, 2017

33.

G. Lazzari, et al, Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polymer Chemistry, 2017, 34 [ MS-9096 U, M or V ]

34.

T. Kobayashi, et al, Principles of early human development and germ cell program from conserved model systems. Nature, 2017, 546.: 416-420 [ MS-9096 U, M or V ]

35.

 U. Elling, et al, A reversible haploid mouse embryonic stem cell biobank resource for functional genomics.Nature, 2017 [ MS-9096 U, M or V ]

36.

P. Dvořáková, et al, Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. Journalof Medicinal Chemistry, 2017, 60.20.: 8385-8393 [ MS-9096 U, M or V ]

37. 

Z. Chen, et al, Tuning chemistry and topography of nanoengineered surfaces to manipulate immuneresponse for bone regeneration applications. ACS Nano, 2017, 11.5.:4494-4506 [ MS-9096 U, M or V ]

38.

Y. Yoshikawa, et al, Ras inhibitors display an anti-metastatic effect by downregulation of lysyl oxidase through inhibition of the Ras-PI3K-Akt-HIF-1α pathway. Cancer Letters, 2017 [ MS-9096 U, M or V ]

39.

F. Clément, Regulating human mammary epithelial stem cells transformation: an interplay between extrinsicand intrinsic signals. 2017 [ MS-9096 U, M or V ]

40.

F. Perche, et al, Improved brain expression of anti-amyloid β scfv by complexation of mRNA including asecretion sequence with PEG-based block catiomer. Current Alzheimer Research, 2017, 14.3.:295-302 [ MS-9096 U, M or V ]

41.

J.-I Furukawa, et al, Impact of the Niemann–Pick c1 Gene Mutation on the Total Cellular Glycomics of CHOCells. Journal of Proteome Research, 2017, 16.8.1802-2810 [ MS-9096 U, M or V ]

42.

K. Arai, et al, Fabrication of 3D‐culture platform with sandwich architecture for preserving liver‐specificfunctions of hepatocytes using 3D bioprinter. Journal of Biomedical Materials Research, 2017, 105.6.:1583-1592 [ MS-9096 U, M or V ]

43.

A. Taguchi, et al, Higher-Order Kidney Organogenesis from Pluripotent Stem Cells. Cell Stem Cell, 2017, 21.6.:730-746 [ MS-9096 U, M or V ]

44.

H. Tamada, et al, Three‐dimensional analysis of somatic mitochondrial dynamics in fission‐deficientinjured motor neurons using FIB/SEM. The Journal of Comparative Neurology, 2017, 525.11.: 2535-2548[ MS-9096 U, M or V ]

45.

Y. Nashimoto, et al, Integrating perfusable vascular networks with a three-dimensional tissue in amicrofluidic device. Integrative Biology, 6 [ MS-9096 U, M or V ]

46.

Y. Nashimoto, et al, Engineering a three-dimensional tissue model with a perfusable vasculature in amicrofluidic device. 2017

47.

L. Moldovan N. Senda, et al, Spheroid imaging of phase-diversity homodyne OCT. 2017

48.

L. Moldovan, et al, iPSC‐Derived Vascular Cell Spheroids as Building Blocks for Scaffold‐Free Biofabrication. Biotechnology Journal: Special Issue: AFOB Special Issue on Stem Cells in Tissue Engineering and Regenerative Medicine, 2017, 12.12

49.

H. Kobayashi, et al, Identification of the determinants of 2-deoxyglucose sensitivity in cancer cells by shRNA library screening. Biochemical and biophysical research communications, 2015, 467:121-127

50.

H. Yurie, et al, The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PloS one, 2017, 12,2

产品列表
产品编号 产品名称 产品规格 产品等级 备注
MS-9035XZ PrimeSurface 35mm dish
 PrimeSurface 35mm 
 培养皿
50个
MS-9060XZ PrimeSurface® 
培养皿60mm
100个
MS-9090XZ PrimeSurface® 
培养皿90mm
50个
MS-9024XZ Sumiron Celltight    板24F 10个
MS-9384UZ PrimeSurface®  
384U多孔板
​0.1 mL
MS-9384WZ PrimeSurface®     
 384U白色多孔板
0.1 mL
MS-9096VZ PrimeSurface® 
 96V多孔板
0.3 mL
MS-9096MZ PrimeSurface® 
 96M多孔板
0.2 mL
MS-9096UZ PrimeSurface® 
96U多孔板
0.3 mL
MS-9096WZ PrimeSurface® 
96U白色多孔板
0.3 mL

使用PrimeSurface® 低吸附耗材形成细胞球体


使用PrimeSurface® 低吸附耗材形成细胞球体

使用PrimeSurface® 低吸附耗材形成细胞球体

◆PrimeSurface® 细胞球体形成原理



使用PrimeSurface® 低吸附耗材形成细胞球体

◆球体实时形成过程



使用PrimeSurface® 低吸附耗材形成细胞球体

使用PrimeSurface® 低吸附耗材形成细胞球体



◆PrimeSurface® 96孔板的选择

住友电木提供U型、纺锤形及V型三种底形的96孔板,进行球体形成建立肿瘤模型时,需要根据细胞的性质选择形状合适的孔板

使用PrimeSurface® 低吸附耗材形成细胞球体



最大容量


使用PrimeSurface® 低吸附耗材形成细胞球体

◆孔形状的不同会造成球体形成状态的差异


MDA-MB-453,MDA-MB-468等凝聚性较弱的细胞在底面倾斜的孔中也能形成球体!

使用PrimeSurface® 低吸附耗材形成细胞球体


铺板数:2×103 cells/well

培养基:RPMI + 10%FBS,37℃,5% CO2 培养日数:7日

MDA-MB-453,MDA-MB-468:人乳腺癌细胞株

近畿大学医学部基因组生物学教室 西尾研究室提供

 

◆产品列表


产品编号

产品名称

孔数

孔底形状

容量

包装

MS-9384UZ

PrimeSurface® 384U plate
PrimeSurface® 384U板 

384

U底

0.1 mL

1/包·20/case

MS-9384WZ

PrimeSurface® 384U White plate
PrimeSurface® 384U白色板 

384

U底

0.1 mL

1/包·20/case

MS-9096VZ

PrimeSurface® 96V plate
PrimeSurface® 96V多孔板

96

V底

0.3 mL

1/包·20/case

MS-9096MZ

PrimeSurface® 96M plate
PrimeSurface® 96M多孔板

96

纺锤底

0.2 mL

1/包·20/case

MS-9096UZ

PrimeSurface® 96U plate
PrimeSurface® 96U板 

96

U底

0.3 mL

1/包·20/case

MS-9096WZ

PrimeSurface® 96U White plate

PrimeSurface® 96U白色板 

96

U底

0.3 mL

1/包·20/case


注:已进行放射线灭菌  保存温度:室温  有效期:制造后两年

Fisherbrand 低吸附移液吸头 02717133

简要描述:降低对样品吸附,提高移液准确性
● 低吸附表面,减少样品损失
● 经独立实验室认证:
– 未灭菌包装,无 DNase/RNase、无热原和无 DNA
– 无菌包装,无 DNase/RNase、无热原、无DNA、无微生物和无 PCR 抑制物
● 自然色
● 通用适配各种研究用移液器(除特别说明)

产品型号:

所属分类:吸头

详情介绍

Fisherbrand 低吸附移液吸头
降低对样品吸附,提高移液准确性
● 低吸附表面,减少样品损失
● 经独立实验室认证:
– 未灭菌包装,无 DNase/RNase、无热原和无 DNA
– 无菌包装,无 DNase/RNase、无热原、无DNA、无微生物和无 PCR 抑制物
● 自然色
● 通用适配各种研究用移液器(除特别说明)

Fisherbrand 低吸附移液吸头 02717133

Fisherbrand 低吸附移液吸头 02717133


备货品牌:

Thermo fisher (试剂耗材)、NUNC、Nalgene、QSP、Orion(奥立龙)、优特、Epredia(原Thermo 病理)、Labserv、Corning、Medicom麦迪康、 Xybio试剂、MKbio


优势产品:

Fisherbrand:载玻片 盖玻片 生物危害垃圾袋 肝素化非肝素化毛细管  塑料比色皿  细胞筛网等

原Thermo病理产品Epredia:4951Pluse   p4981 超优 优加刀片3053835 3052835   包埋剂   包埋盒  

Labserv耗材:细胞培养皿 血清移液管 细胞培养瓶 离心管 8联管 EP微量离心管 细胞培养板

Thermo Orion水质分析产品:pH缓冲液 电导标准液 水质分析仪 pH测量仪、电极


蛋白低吸附容器系列 Proteosave™ SS


蛋白低吸附容器系列 Proteosave™ SS

蛋白低吸附容器系列 Proteosave™ SS

蛋白低吸附容器系列 Proteosave™ SS

Proteosave™是一种采用 S-BIO 创新开发的光交联超亲水性聚合物,固定在塑料容器内部使其形成高密度亲水基团,能够有效抑制蛋白和肽的非特异性吸附的产品。

◆特点


● 减少样品损失,防止从容器中析出溶出物

在塑料容器内部均匀地涂抹光交联超亲水性聚合物、並风干以及通过 UV 照射,使涂膜硬化,并制造高密度亲水基团表面,从而抑制蛋白和肽的非特异性吸附,减少样品损失,并进一步防止从容器中析出溶出物


 耐有机溶剂性与耐热性也大幅度提升

通过光交联与基体之间产生共价键,使得传统的涂抹难以实现的耐有机溶剂性和耐热性也得以保持。

◆用途


● 蛋白提取样品的制备和保存容器

理想情况下是尽量在native的状态下处理提取蛋白,并短时间内完成实验。

通过使用Proteosave™ SS可尽可能抑制提取蛋白的变性,提高回收率。

当必须延长实验时间的时候,亦可在-80°C下长期保存,并且仍能保持回收率。


● 蛋白纯化的纯化容器和色谱馏分收集器

由于吸附时瞬间发生的,即使高效地完成了一系列操作,回收率还是很低,在极端的案例中,也有在提高纯度时,目标蛋白消失的例子。

Proteosave™ SS在纯化时可作为馏分收集器,防止蛋白变性、失活和损失,并且还能作为高纯度贵重样品的保存容器。


● 蛋白定量样品的制备和反应容器

对于在痕量区域中的定量来说,吸附引起的样品本身的浓度变化也是一个问题,但也需要注意标准曲线的标准浓度变化。

由于没有办法验证其可靠性,所以可能会在没有意识的情况下相信错误的结果。

Proteosave™ SS可防止这类样品的浓度变化,提高定量结果的信赖性。


● 蛋白分析的样品制备、反应容器和色谱馏分收集器

在检测生物活性时,表面活性剂等的蛋白稳定或吸附防止剂的混入可能会抑制反应。

通过使用Proteosave™ SS,无需添加此类添加物,可在native的状态下分析样品。

此外,使用Proteosave™ SS保存的酶可以维持良好的活性,还能有效地用作蛋白酶等的酶保存、制备和反应容器。

◆应用实例

蛋白组学中的使用示例


■与其他公司低吸附产品比较LC-MS中肽的鉴定值

蛋白低吸附容器系列 Proteosave™ SS

实验条件


容器:Proteosave™ SS 1.5 mL微管、其他公司5种

样品:肝癌细胞Hep3B来源肽

容量:300 ng

机种:nanoLC-Ultra 2D with TripleTOF® 5600

色谱柱:75 μm×150 mm, ChromXP C18-CL, 3 μm 120 Å

洗脱液:A溶液:0.1% FA and 1% CAN

洗脱液:B溶液:0.1% FA and 99% CAN

肽鉴定软件:Mascot Server


数据提供:国立研究开发法人国立癌症研究中心研究所 创药临床研究邻域 纸田正博

小分子化合物的使用案例

■比较各容器中小分子化合物的吸附


蛋白低吸附容器系列 Proteosave™ SS

实验条件


容器:Proteosave™ SS 1.5 mL微管、无涂层1.5 mL微管

浓度:0.1 μg/mL

样品:易吸附于容器的非离子性小分子化合物

1. Digoxin(心绞痛药)

2. Paclitaxel(抗癌药)

检测方法:将样品放置于管内1 h,使用LC-MS/MS确认

Adsorption (%) = 100 – Concentration in the 0 and 1h sample / Concentration in the initial sample x 100


· 据Sekisui Medical Co., Ltd. 药物研发支持中心评估

耐有机溶剂性与耐热性/耐寒性


 对应产品:材质为聚丙烯的产品

 使用微管1.5 mL进行实验

■有机溶剂


1H

5H

10%

50%

100%

10%

50%

100%

甲醇

乙醇

2-丙醇

甘油

乙腈

丙酮

DMSO

2-巯基乙醇

○:没问题;-:未确认;×:劣化



■耐热性/耐寒性

10 min

30 min

24 h

6 month

120℃(高温灭菌)

×

100℃(煮沸)

60℃

40℃

-4℃

-80℃

 ○:没问题;-:未确认;×:劣化


■表面活性剂

0.10%

1.00%

CHAPS

TritonX

Tween20

SDS

○:没问题;-:未确认;×:劣化

◆产品列表


Proteosave™ SS(耐有机溶剂;耐热型)


蛋白低吸附容器系列 Proteosave™ SS

蛋白低吸附容器系列 Proteosave™ SS

产品编号

产品名称

材质

规格

包装

MS-4205MZ

Proteosave™ SS 微管0.5 mL

聚丙烯

未灭菌

500 pcs/case

MS-4255MZ

Proteosave™ SS 微管0.5 mL R

辐射灭菌

500 pcs/case

MS-4215MZ

Proteosave™ SS 微管1.5 mL

未灭菌

500 pcs/case

MS-4265MZ

Proteosave™ SS 微管1.5 mL R

辐射灭菌

500 pcs/case

MS-4201XZ

Proteosave™ SS 离心管0.5 mL

未灭菌

500 pcs/case

MS-4202XZ

Proteosave™ SS 离心管1.5 mL

未灭菌

500 pcs/case

储存温度:室温   保质期:生产后两年

Proteosave™ SS

蛋白低吸附容器系列 Proteosave™ SS

蛋白低吸附容器系列 Proteosave™ SS

蛋白低吸附容器系列 Proteosave™ SS

产品编号

产品名称

材质

规格

包装

MS-52150Z※1

Proteosave™ SS 离心管15 mL

PET

未灭菌

100 pcs/case

MS-52550Z

Proteosave™ SS 离心管50 mL R

聚丙烯

辐射灭菌

100 pcs/case

MS-8296FZ

Proteosave™ SS孔板96F

聚苯乙烯

无盖,未灭菌

50 pcs/case

MS-8296VZ

Proteosave™ SS孔板96V

聚丙烯

无盖,未灭菌

20 pcs/case

MS-3296UZ

Proteosave™ SS孔板96U

聚苯乙烯

无盖,未灭菌

50 pcs/case

储存温度:室温   保质期:生产后两年

※1 规格可能温度:-80°C~40°C

※以上产品仅供实验研究用

Thermo Beckman 低吸附无色透明吸头

简要描述:Beckman 低吸附无色透明吸头,预灭菌/未灭菌,96 支 / 盒,10 盒 / 包装,5包装/箱。

产品型号: 918-261-05

所属分类:移液器

详情介绍

Thermo Scientific Beckman低吸附无色透明吸头

Beckman 低吸附无色透明吸头,预灭菌/未灭菌,96 支 / 盒,10 盒 / 包装,5包装/箱。


Thermo Beckman 低吸附无色透明吸头


备货品牌:

Thermo fisher (试剂耗材)、NUNC、Nalgene、QSP、Orion(奥立龙)、优特、Epredia(原Thermo 病理)、Labserv、Corning、Medicom麦迪康、 Xybio试剂、MKbio


优势产品:

Fisherbrand:载玻片 盖玻片 生物危害垃圾袋 肝素化非肝素化毛细管  塑料比色皿  细胞筛网等

原Thermo病理产品Epredia:4951Pluse   p4981 超优 优加刀片3053835 3052835   包埋剂   包埋盒  

Labserv耗材:细胞培养皿 血清移液管 细胞培养瓶 离心管 8联管 EP微量离心管 细胞培养板

Thermo Orion水质分析产品:pH缓冲液 电导标准液 水质分析仪 pH测量仪、电极


SYSBEL吸附棉条 307US0001G

简要描述:SYSBEL吸附棉条 307US0001G
通用型/深灰色/所有液体通用/ 吸附容量:11加仑(50升)每箱/12根每箱

产品型号:

所属分类:吸收棉

详情介绍

产品简介

化学品泄漏应急处理,可吸附油类、化学品及水
● 材质 MBPP(熔喷聚丙烯)
● 具有高吸收率,吸收快,高清洁性等特点
● 不与极性、有毒性、危险性化学品反应,使用安全,对人体健康无危险
● 废弃物处理成本低,泄漏液体清理简单省力
● 适用于多种化学品,如油类品、液体化学品、所有液体通用
● 符合美国职业安全健康管理局(OSHA) OSHA 29 CFR 1910.1450 及美国国家消防协会(NFPA) NFPA CODE 30 规范

SYSBEL吸附棉条 307US0001G

SYSBEL吸附棉条(外包装尺寸:51×41×29cm),通用型/深灰色/所有液体通用/ 吸附容量:11加仑(50升)每箱/12根每箱 ;外形尺寸(L*W*H/CM)120 x 7.6(长*直径); US0001G

产品货号:T_307US0001G