BAMBANKER® 无血清细胞冻存液

BAMBANKER® 无血清细胞冻存液

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

BAMBANKER®BAMBANKER® 无血清细胞冻存液

无血清细胞冻存液

BAMBANKER® 是一种无血清细胞冻存液。可在 -80℃ 长期保存细胞(肿瘤细胞和常规细胞)。

BAMBANKER® 无血清细胞冻存液

◆产品特性

 ● 即用型细胞冻存液

 ● 无需分步降温,直接使用

 ● 无需稀释

 ● 无需程序降温盒

 ● -80℃ 长期保存

 ● 无血清

无血清冻存液的优点

 ● 与含血清类型相比,批次间的成分组成差异小,可保持稳定的品质。

 ● 不含血清,因此没有因动物源的未知成分和感染物质所产生的影响与风险。

 ● 可对无血清驯化细胞进行冷冻,节省再驯化步骤。

 

操作流程

1)收集生长对数期*的细胞(5×105-1×107个细胞)

2)用1mL 该细胞冻存液悬浮细胞,置于冻存管中,不需预冷,直接 -80℃ 冷冻保存,也可-80℃冻存 12 小时后可

      转移至液氮中保存。

3)用恒温箱或者水浴锅快速复苏细胞

      *冷冻细胞必须处于生长对数期

BAMBANKER® 无血清细胞冻存液

 

无菌检测**

内毒素:生色底物法

支原体:荧光抗体法

真菌和细菌:依据日本药典

**:可索取检验证书)

 

 

BAMBANKER® Direct

BAMBANKER Direct 是“无血清型”细胞冻存液。

BAMBANKER® Direct无需离心收集细胞

BAMBANKER® 无血清细胞冻存液① 不需冻存前预处理,操作简便

② 不需稀释,直接使用

③ 无需分步降温,直接使用

④ 可快速、长期冻存细胞(-80℃或液氮)

⑤ 不含血清

 

BAMBANKER® 无血清细胞冻存液

 



BAMBANKER® Direct冻存步骤VS常规冻存步骤

使用本产品无需经过离心等复杂步骤,只需往培养基内添加与培养液等量的 BAMBANKER Direct,再分装到冻存管,置于-80℃ 便可冻存细胞。

 

应用

BAMBANKER使用例】

 细胞名称  保存时间
生存率
  BAMBANKER  公司A(含血清)
公司A(不含血清)

P3U1

(小鼠骨髓瘤细胞系)

12个月
95% 95% 70%

K562

(人白血病细胞系)

12个月
73% 70% 60%
人体胃黏膜上皮细胞 10个月
100% 62% 56%

human γδT cells

(人γδT细胞)

10个月
65% 37% 35%

 Daudi

(人 B细胞系)

12个月
100% 100% 92%

PC12

(大鼠源肾上腺嗜铬细胞瘤)

11个月
95% 59% 20%

human B cell line 

(人B细胞系)

9个月
74% 54% 35%

OKT4

(小鼠杂交瘤细胞)

12个月
100% 100% 92%

B细胞系

(猴)

10个月 56% 40% 18%

低温冻存实验证明以下细胞保存完好

 

3T3‐L1(小鼠前脂肪细胞系)

A431(人扁平上皮癌细胞系)

BAEC(牛主动脉血管内皮细胞系)

Balb/3T3(小鼠成纤维细胞系)

C2C12(小鼠骨骼肌细胞系)

 Daudi(人B细胞系)

ECV304(人脐静脉内皮细胞系)

H295R(肾上腺皮质细胞)

HEK293(人胚胎肾细胞系)

HEK293T(人胚胎肾细胞系)

HeLa(人子宫颈癌细胞系)

HeLa S3(人子宫颈癌细胞系)

HepG2(人肝癌细胞系)

HFF(人正常成纤维细胞系)

Huh7(人肝癌细胞系)

Jurkat(人白血病T细胞系)

K562(人慢性骨髓性白血病细胞系)

KATOIII (人胃癌上皮细胞系)

KLM‐1(人胰腺癌细胞系)

MDCK(犬肾小管上皮细胞系)

MEF(小鼠胚胎成纤维细胞)

NIH3T3(小鼠胚胎皮肤细胞)

OKT4(小鼠杂交瘤细胞)

OP9(小鼠骨髓基质细胞)

P3U1(小鼠骨髓瘤细胞系)

PANC‐1(人胰腺癌细胞系)

PC12(大鼠源肾上腺嗜铬细胞瘤)

RPE(人视网膜上皮细胞系)

SNL(小鼠胚胎成纤维细胞)

TSU‐Pr1(人前列腺癌细胞系)

Vero(非洲绿猴肾细胞系)

human γδT cells (人γδT细胞)

human B cell line (人B细胞系)

HDF(人皮肤成纤维细胞)  HCC20(人乳腺原发性导管癌细胞) BMMCs(人骨髓单核细胞系)
BMMCs(猪骨髓单核细胞系) BMSCs(马骨髓间充质干细胞系) C1(人成纤维细胞系)
CEF(牛胚胎成纤维细胞) CHO-K1(中国仓鼠卵巢细胞系) DPCs(大鼠牙髓细胞)
DPCs(人牙髓细胞) ESCs(人胚胎干细胞) EVT(人绒毛外滋养层细胞)
GH3(大鼠垂体瘤细胞) Gli36(胶质瘤细胞系)
h1(人类胚胎干细胞)
h9(人类胚胎干细胞) HN4(人口腔上皮细胞系)

HS-RMS-2

(多形性横纹肌肉瘤细胞系)

IPS(人诱导性多能干细胞)

LNCaP clone FGC

(人前列腺癌细胞)

MCF 10A(人正常乳腺细胞)

MEF-BL/6-1

(小鼠胚胎成纤维细胞)

MNCs(人单核细胞) MSCs(大鼠间充质干细胞系)
PBMCs(人外周血单个核细胞) PDL(人牙周膜细胞) pES(大鼠孤雌胚胎干细胞系)
Sf9(草地贪夜蛾细胞系) U251(胶质瘤细胞系) U87(胶质瘤细胞系)
VT(人绒毛膜滋养层细胞) 癌症干细胞 大鼠肝细胞

猴B细胞系

人外周血活化淋巴细胞

永生化人肌肉细胞

小鼠脾脏活化淋巴细胞

小鼠ES细胞系

人胃上皮细胞

大鼠神经祖细胞 大鼠脂肪细胞 狗肿瘤细胞
胶质瘤细胞系 牛脂肪细胞 牛子宫内膜上皮细胞
人扁桃体细胞 人肝细胞 人骨髓CD34+细胞
人巨噬细胞 人淋巴细胞 人输卵管上皮细胞
人胎儿卵巢成纤维细胞 人胎儿卵巢体细胞 人自然杀伤细胞
神经祖细胞 小鼠颅骨成骨细胞 心肌祖细胞
猪成纤维细胞

 

ES细胞(小鼠)使用实例
T.Hikichi,et al; Differentiation Potential of Parthenogenetic Embryonic Stem Cells Is Improved by Nuclear Transfer, Stem Cells, 2007, 25, 46-53

更多相关资料请点击文字:

BAMBANKER® 与自制冻存液的冻存效果比较


※ 本页面产品仅供研究用。研究以外不可使用。


Bambanker® 与其他相关产品的比较

细胞冻存效果验证


细胞冻存液类型

1.Bambanker®

2.Medium with serum (含血清,A公司)

3.Serum-free Medium (无血清,A公司)


实验结果

*1:细胞-80℃的保存时间


BAMBANKER® 无血清细胞冻存液



相关PDF


BAMBANKER® 无血清细胞冻存液

BAMBANKER® 无血清细胞冻存液

BAMBANKER® 无血清细胞冻存液

Wako BAMBANKER冻存液(新手册)

细胞种类列举

BAMBANKER® 无血清细胞冻存液

BAMBANKER细胞冻存液

冻存解冻步骤说明

(终端).pdf

1.

Q:为什么我使用了 BAMBANKER® 来保存细胞,但是存活率依然不高?

A:请冻存前确保细胞处于生长对数期,并且冻存时细胞数目控制在 5×105~1×107/mL 冻存液。

2.

Q:我们实验室已经有固定的冻存程序了,换了你们的 BAMBANKER® 可以还继续用原来程序降温的方法冻存吗?

A:虽然本产品可以无需程序降温冻存细胞,但如果通过程序降温盒等适当控制了温度下降的速度,效果更佳。

3.

Q:哪些细胞株(系)适合使用BAMBANKER® 来进行细胞冷冻保存?

A:几乎所有细胞株(系)都可以使用 BAMBANKER® 进行冻存。对于较为宝贵的 ES/iPS 细胞的保存尤其适用。官网上所列举的细胞系均已经过测试验证。

但也并不排除可能有某些细胞株是不适合使用 BAMBANER® 来进行冻存的,用户在没有确认是否可使用时,建议在进行正式细胞冻存之前先进行预实验。

4.

Q:无血清冻存液相比传统含血清冻存液有什么优势?

A:无血清冻存液因不含有动物血清,质量更稳定,批间差小;同时未知生物成分或感染性物质污染细胞的几率也极低,尤其对于 ES/iPS 细胞等有可能用于再生医疗的细胞安全得以严格保障;可以直接冻存无血清培养的细胞,免去无血清再驯化的步骤;另外 BAMBANKER® 无血清细胞冻存液不需要像传统的血清冻存液需要程序降温,减少了用户的繁琐操作,节省了时间。

5.

Q:BAMBANKER® 在冷冻保存细胞的过程中起什么作用?

A:BAMBANKER® 无血清细胞冻存液使用了 DMSO 等作为保护剂,在冻存细胞时能以1℃/min 左右的温度下降而逐渐冻结,在此过程中,细胞内的水分子被置换成冻结保护剂,抑制胞内和细胞周边的冰晶的形成,防止细胞膜和细胞器结构损伤,防止蛋白变质。

6.

Q:未使用的BAMBANKER® 无血清细胞冻存液应该如何保存?

A:2-10℃ 避光保存。开封后尽快使用。请注意保质期为自生产日期起 24 个月。

7.

Q:BAMBANKER® 能否使用于医疗领域?

A:BAMBANKER® 仅供科研使用,不能使用于人体或医疗领域。

BAMBANKER™参考文献

 

[1]

Zhang C., Seo J., Nakamura T.   (2018) Cellular Approaches in Investigating Argonaute2-Dependent RNA   Silencing. In: Okamura K., Nakanishi K. (eds) Argonaute Proteins. Methods in   Molecular Biology, vol 1680. Humana Press, New York, NY.

[2]

Sharma, A., M¨ucke, M., &   Seidman, C. E. (2018). Human induced pluripotent stem cell production and   expansion from blood using a non-integrating viral reprogramming vector.   Current Protocols in Molecular Biology,122, e58. doi: 10.1002/cpmb.58.

[3]

Souta Motoike, Mikihito Kajiya,   Nao Komatsu, et al. Cryopreserved clumps of mesenchymal stem   cell/extracellular matrix complexes retain osteogenic capacity and induce   bone regeneration. Stem Cell Res Ther. 2018; 9: 73. Published online 2018 Mar   21. doi: 10.1186/s13287-018-0826-0.

[4]

Konuma T1, Kohara C1, Watanabe   E2, et al. Monocyte subsets and their phenotypes during treatment with   BCR-ABL1 tyrosine kinase inhibitors for Philadelphia chromosome-positive   leukemia. Hematol Oncol. 2018 Apr;36(2):451-456. doi: 10.1002/hon.2497. Epub   2018 Feb 12.

[5]

Srijaya Thekkeparambil   Chandrabose, Sandhya Sriram, et al. Amenable epigenetic traits of dental pulp   stem cells underlie high capability of xeno-free episomal reprogramming.

Stem Cell Research & Therapy 2018 9:68.

[6]

Evans, Michael A. et al.   "Macrophage-Mediated Delivery of Light Activated Nitric Oxide Prodrugs with   Spatial, Temporal and Concentration Control." Chemical Science (2018): n.   pag. Web. doi:10.1039/C8SC00015H.

[7]

Jauregui, C.; Yoganarasimha, S.;   Madurantakam, P. Mesenchymal Stem Cells Derived from Healthy and Diseased   Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds.   Bioengineering 2018, 5, 8.

[8]

Khamaikawin, Wannisa et al.   Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously   Infected with HIV-1. Molecular Therapy – Methods & Clinical Development ,   Volume 9,23-32.

[9]

Masako Okumura, Toyoaki Natsume,   Masato T Kanemaki, Tomomi Kiyomitsu. Optogenetic reconstitution reveals that   Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a   multi-arm ensemble. bioRxiv 277202; doi: https://doi.org/10.1101/277202

[10]

https://labchem.wako-chem.co.jp/journal/docs/proup10.pdf<链接>

[11]

Ince T A, Aster J C. In vitro   culture conditions for T-cell acute lymphoblastic leukemia/lymphoma: U.S.   Patent 9,683,217[P]. 2017-6-20.

[12]

Morris C D, Azadnia P, de Val N,   et al. Differential Antibody Responses to Conserved HIV-1 Neutralizing   Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140   Trimers[J]. mBio, 2017, 8(1): e00036-17.<链接>

[13]

Lee K, Saetern O C, Nguyen A, et   al. Derivation of Leptomeninges Explant Cultures from Postmortem Human Brain   Donors[J]. JoVE (Journal of Visualized Experiments), 2017 (119):   e55045-e55045.<链接>

[14]

Buenrostro J D, Corces R, Wu B,   et al. Single-cell epigenomics maps the continuous regulatory landscape of   human hematopoietic differentiation[J]. bioRxiv, 2017: 109843.<链接>

[15]

Edmonds R E, Garvican E R, Smith   R K W, et al. Influence of commonly used pharmaceutical agents on equine bone   marrow‐derived mesenchymal stem cell viability[J]. Equine veterinary journal,   2017, 49(3): 352-357.<链接>

[16]

Jitraruch S, Dhawan A, Hughes R   D, et al. Cryopreservation of Hepatocyte Microbeads for Clinical   Transplantation[J]. Cell transplantation, 2017.<链接>

[17]

Usarek E, Barańczyk-Kuźma A,   Kaźmierczak B, et al. Validation of qPCR reference genes in lymphocytes from   patients with amyotrophic lateral sclerosis[J]. PloS one, 2017, 12(3):   e0174317.<链接>

[18]

Gagnon E, Connolly A, Dobbins J,   et al. Studying Dynamic Plasma Membrane Binding of TCR-CD3 Chains During   Immunological Synapse Formation Using Donor-Quenching FRET and FLIM-FRET[J].   The Immune Synapse: Methods and Protocols, 2017: 259-289.<链接>

[19]

Foster K, Chaddock J, Penn C, et   al. Non-cytotoxic protein conjugates: U.S. Patent 9,474,807[P]. 2016-10-25.

[20]

Araki N, Iida M, Machida K.   Bioassay method for detecting physiologically active substance: U.S. Patent   9,316,588[P]. 2016-4-19.

[21]

Sazinsky S, Michaelson J S,   Sathyanarayanan S, et al. Antibodies to icos: U.S. Patent Application   15/076,867[P]. 2016-3-22

[22]

李凯. Studies on Innate Immune   Activation by HBV Infection and Its Sensing Mechanism in Hepatocytes[J].   2016.

[23]

Ip L R H. Effect of INPP4B loss   on DNA repair and treatment strategies in ovarian cancer[D]. UCL (University   College London), 2016.

[24]

Thakkar A. Novel hormonal   combination therapy for triple negative breast cancer[D]. University of   Miami, 2016.

[25]

Pakdaman Y. In-vitro   characterization of STUB1 mutations in recessively inherited spinocerebellar   ataxia-16[D]. The University of Bergen, 2016.

[26]

Caxaria S. Induced pluripotent   stem cells (iPSCs) for research and therapy: induction of hepatic   differentiation in iPSCs and evaluation of their quality as a model of in   vivo development in the context of coagulation[D]. UCL (University College   London), 2016.<链接>

[27]

Bayne R A, Donnachie D J,   Kinnell H L, et al. BMP signalling in human fetal ovary somatic cells is   modulated in a gene-specific fashion by GREM1 and GREM2[J]. MHR: Basic   science of reproductive medicine, 2016, 22(9): 622-633.<链接>

[28]

Friedrich D. HIF-1 [alpha]   Drives Fungal Immunity in Human Macrophages[D]. Universität zu Lübeck,   2016.<链接>

[29]

Yasuda M, Kawabata J,   Akieda-Asai S, et al. Guanylyl cyclase C and guanylin reduce fat droplet   accumulation in cattle mesenteric adipose tissue[J]. The Journal of   Veterinary Science, 2016.<链接>

[30]

Campa M J, Moody M A, Zhang R,   et al. Interrogation of individual intratumoral B lymphocytes from lung   cancer patients for molecular target discovery[J]. Cancer Immunology,   Immunotherapy, 2016, 65(2): 171-180.<链接>

[31]

Kobayashi T, Yagi Y, Nakamura T.   Development of Genome Engineering Tools from Plant-Specific PPR Proteins   Using Animal Cultured Cells[J]. Chromosome and Genomic Engineering in Plants:   Methods and Protocols, 2016: 147-155.<链接>

[32]

Shikata H, Kaku M, Kojima S I,   et al. The effect of magnetic field during freezing and thawing of rat bone   marrow-derived mesenchymal stem cells[J]. Cryobiology, 2016, 73(1):   15-19.<链接>

[33]

Hirakawa M, Matos T, Liu H, et   al. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK   cells[J]. JCI insight, 2016, 1(18).<链接>

[34]

Durruthy-Durruthy J, Sebastiano   V, Wossidlo M, et al. The primate-specific noncoding RNA HPAT5 regulates   pluripotency during human preimplantation development and nuclear   reprogramming[J]. Nature genetics, 2016, 48(1): 44-52.<链接>

[35]

Caxaria S, Arthold S, Nathwani A   C, et al. Generation of integration-free patient specific iPS cells using   episomal plasmids under feeder free conditions[J]. Patient-Specific Induced   Pluripotent Stem Cell Models: Generation and Characterization, 2016: 355-366.<链接>

[36]

Nonomura Y, Otsuka A, Nakashima   C, et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker   of nivolumab treatment efficacy in metastatic melanoma patients[J].   Oncoimmunology, 2016, 5(12): e1248327.<链接>

[37]

Burridge P W, Diecke S, Matsa E,   et al. Modeling cardiovascular diseases with patient-specific human   pluripotent stem cell-derived cardiomyocytes[J]. Patient-Specific Induced   Pluripotent Stem Cell Models: Generation and Characterization, 2016: 119-130.<链接>

[38]

Mendonça M C P, Soares E S, de   Jesus M B, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in   Cells of the Blood–Brain Barrier: An in Vitro and in Vivo Study[J]. Molecular   pharmaceutics, 2016, 13(11): 3913-3924.<链接>

[39]

Eldaim A, Hashimoto O, Ohtsuki   H, et al. Expression of uncoupling protein 1 in bovine muscle cells[J].   Journal of animal science, 2016, 94(12): 5097-5104.<链接>

[40]

Zhen A, Rezek V, Youn C, et al.   Stem-cell based engineered immunity against HIV infection in the humanized   mouse model[J]. JoVE (Journal of Visualized Experiments), 2016 (113):   e54048-e54048.<链接>

[41]

Bastian N A, Bayne R A,   Hummitzsch K, et al. Regulation of fibrillins and modulators of TGFβ in fetal   bovine and human ovaries[J]. Reproduction, 2016, 152(2): 127-137.<链接>

[42]

Eto K, Takayama N, Nakamura S,   et al. Method for producing differentiated cells: U.S. Patent 9,200,254[P].   2015-12-1.

[43]

Eto K, Takayama N, Nakamura S,   et al. Novel Method for Producing Differentiated Cells: U.S. Patent   Application 14/925,508[P]. 2015-10-28.

[44]

Yamashita J, Takeda M.   Cd82-positive cardiac progenitor cells: U.S. Patent Application   15/308,147[P]. 2015-4-16.

[45]

Cai Y, Sugimoto C, Arainga M, et   al. Preferential Destruction of Interstitial Macrophages over Alveolar   Macrophages as a Cause of Pulmonary Disease in Simian Immunodeficiency   Virus–Infected Rhesus Macaques[J]. The Journal of Immunology, 2015, 195(10):   4884-4891.<链接>

[46]

Kojima S I, Kaku M, Kawata T, et   al. Cranial suture-like gap and bone regeneration after transplantation of   cryopreserved MSCs by use of a programmed freezer with magnetic field in   rats[J]. Cryobiology, 2015, 70(3): 262-268.<链接>

[47]

Egawa E Y, Kitamura N, Nakai R,   et al. A DNA hybridization system for labeling of neural stem cells with SPIO   nanoparticles for MRI monitoring post-transplantation[J]. Biomaterials, 2015,   54: 158-167.<链接>

[48]

Durruthy J D, Sebastiano V.   Derivation of GMP-Compliant Integration-Free hiPSCs Using Modified mRNAs[J].   Stem Cells and Good Manufacturing Practices: Methods, Protocols, and   Regulations, 2015: 31-42.<链接>

[49]

Sato Y, Sasaki T, Takahashi S,   et al. Development of a highly reproducible system to evaluate inhibition of   cytochrome P450 3A4 activity by natural medicines[J]. Journal of Pharmacy   & Pharmaceutical Sciences, 2015, 18(4): 316-327.<链接>

[50]

Burridge P W, Holmström A, Wu J   C. Chemically defined culture and cardiomyocyte differentiation of human   pluripotent stem cells[J]. Current protocols in human genetics, 2015: 21.3.   1-21.3. 15.<链接>

[51]

Käding N. Hypoxia Regulates Host   Cell Metabolism and Thereby Enhancing Clamydia Pneumonia Growth[D]. Zentrale   Hochschulbibliothek Lübeck, 2015.<链接>

[52]

Lu S. Calcium Dependent   Regulatory Mechanism in Wolfram Syndrome: A Dissertation[J]. 2015.

[53]

Garvican E R, Cree S, Bull L, et   al. Viability of equine mesenchymal stem cells during transport and   implantation[J]. Stem cell research & therapy, 2014, 5(4): 1.<链接>

[54]

Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 14/508,745[P]. 2014-10-7.

[55]

Foster K, Chaddock J, Penn C, et   al. Non-cytotoxic protein conjugates: U.S. Patent 8,778,634[P]. 2014-7-15.

[56]

Ramathal C Y, Dumuthy-Durruthy   J, Pera R A R, et al. Generation of male germ cells: U.S. Patent Application   14/904,396[P]. 2014-7-10

[57]

Ince T A. Assays, methods and   kits for analyzing sensitivity and resistance to anti-cancer drugs,   predicting a cancer patient's prognosis, and personalized treatment   strategies: U.S. Patent Application 14/894,595[P]. 2014-6-4.

[58]

Nishio M, Saeki K.   Differentiation of human pluripotent stem cells into highly functional   classical brown adipocytes[J]. Methods Enzymol, 2014, 537: 177-197.<链接>

[59]

Durruthy-Durruthy J, Briggs S F,   Awe J, et al. Rapid and efficient conversion of integration-free human   induced pluripotent stem cells to GMP-grade culture conditions[J]. PloS one,   2014, 9(4): e94231.<链接>

[60]

Koido S, Homma S, Okamoto M, et   al. Treatment with Chemotherapy and Dendritic Cells Pulsed with Multiple   Wilms' Tumor 1 (WT1)–Specific MHC Class I/II–Restricted Epitopes for   Pancreatic Cancer[J]. Clinical Cancer Research, 2014, 20(16):   4228-4239.<链接>

[61]

Patz Jr E F. Antibodies   Expressed by Intratumoral B Cells as the Basis for a Diagnostic Test for Lung   Cancer[R]. DUKE UNIV DURHAM NC, 2014.<链接>

[62]

Kaku M, Shimasue H, Ohtani J, et   al. A case of tooth autotransplantation after long-term cryopreservation   using a programmed freezer with a magnetic field[J]. The Angle Orthodontist,   2014, 85(3): 518-524.<链接>

[63]

Kaku M, Koseki H, Kojima S, et   al. Cranial bone regeneration after cranioplasty using cryopreserved   autogenous bone by a programmed freezer with a magnetic field in rats[J].   CryoLetters, 2014, 35(6): 451-461.<链接>

[64]

Koido S, Kinoshita S, Mogami T,   et al. Immunological assessment of cryotherapy in breast cancer patients[J].   Anticancer research, 2014, 34(9): 4869-4876.<链接>

[65]

Sazuka S, Katsuno T, Nakagawa T,   et al. Fibrocytes are involved in inflammation as well as fibrosis in the   pathogenesis of Crohn's disease[J]. Digestive diseases and sciences, 2014,   59(4): 760-768.<链接>

[66]

Lin S L, Lee S Y, Lin Y C, et   al. Evaluation of mechanical and histological properties of cryopreserved   human premolars under short-term preservation: A preliminary study[J].   Journal of Dental Sciences, 2014, 9(3): 244-248.<链接>

[67]

Poole E, Reeves M, Sinclair J H.   The use of primary human cells (fibroblasts, monocytes, and others) to assess   human cytomegalovirus function[J]. Human Cytomegaloviruses: Methods and   Protocols, 2014: 81-98.<链接>

[68]

Garvican E R, Dudhia J, Alves A   L, et al. Mesenchymal stem cells modulate release of matrix proteins from   tendon surfaces in vitro: a potential beneficial therapeutic effect[J].   Regenerative medicine, 2014, 9(3): 295-308.<链接>

[69]

Skinner J A, Zurawski S M,   Sugimoto C, et al. Immunologic characterization of a rhesus macaque H1N1   challenge model for candidate influenza vaccine assessment[J]. Clinical and   Vaccine Immunology, 2014: CVI. 00547-14.<链接>

[70]

Terunuma H, Deng X, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 14/780,394[P]. 2013-3-27.

[71]

Cho M, Yamazaki T, Endo M, et   al. Anti-Phospholipase D4 Antibody: U.S. Patent Application 14/375,266[P].   2013-1-31.

[72]

Bhandari S. Radiological,   clinical and laboratory based studies in the pathogenesis of desmoid tumours   in familial adenomatous polyposis[J]. 2013.

[73]

Gonzàlez Juncà A. Study of   molecular mechanisms implicated in the TGF-beta oncogenic effect in   Glioma[J]. 2013.

[74]

Koseki H, Kaku M, Kawata T, et   al. Cryopreservation of osteoblasts by use of a programmed freezer with a   magnetic field[J]. CryoLetters, 2013, 34(1): 10-19.<链接>

[75]

Naito H, Yoshimura M, Mizuno T,   et al. The advantages of three‐dimensional culture in a collagen hydrogel for   stem cell differentiation[J]. Journal of Biomedical Materials Research Part   A, 2013, 101(10): 2838-2845.<链接>

[76]

Stec M, Baran J, Szatanek R, et   al. Properties of monocytes generated from haematopoietic CD34+ stem cells   from bone marrow of colon cancer patients[J]. Cancer Immunology,   Immunotherapy, 2013, 62(4): 705-713.<链接>

[77]

Müller L, Brighton L E, Carson J   L, et al. Culturing of human nasal epithelial cells at the air liquid   interface[J]. Journal of visualized experiments: JoVE, 2013 (80).<链接>

[78]

Kalaszczynska I, Ruminski S,   Platek A E, et al. Substantial differences between human and ovine   mesenchymal stem cells in response to osteogenic media: how to explain and   how to manage?[J]. BioResearch open access, 2013, 2(5): 356-363.<链接>

[79]

Tamai Y, Hasegawa A, Takamori A,   et al. Potential Contribution of a Novel Tax Epitope–Specific CD4+ T Cells to   Graft-versus-Tax Effect in Adult T Cell Leukemia Patients after Allogeneic   Hematopoietic Stem Cell Transplantation[J]. The Journal of Immunology, 2013,   190(8): 4382-4392.<链接>

[80]

Kasai K, Nakashima H, Liu F, et   al. Toxicology and biodistribution studies for MGH2. 1, an oncolytic virus   that expresses two prodrug-activating genes, in combination with prodrugs[J].   Molecular Therapy-Nucleic Acids, 2013, 2: e113.<链接>

[81]

Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 13/980,777[P]. 2012-1-17.

[82]

Somm E, Bonnet N, Martinez A, et   al. A botulinum toxin–derived targeted secretion inhibitor downregulates the   GH/IGF1 axis[J]. The Journal of clinical investigation, 2012, 122(9):   3295.<链接>

[83]

Takaoka E, Sonobe H, Akimaru K,   et al. Multiple sites of highly amplified DNA sequences detected by molecular   cytogenetic analysis in HS-RMS-2, a new pleomorphic rhabdomyosarcoma cell   line[J]. American journal of cancer research, 2012, 2(2): 141.<链接>

[84]

Fahlbusch F B, Dawood Y, Hartner   A, et al. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated   via oxygen tension: implications for intrauterine growth restriction?[J]. The   Journal of Maternal-Fetal & Neonatal Medicine, 2012, 25(11): 2209-2215.<链接>

[85]

Aloé S, Weber F, Behr B, et al.   Modulatory effects of bovine seminal plasma on uterine inflammatory   processes[J]. Reproduction in domestic animals, 2012, 47(1): 12-19.<链接>

[86]

Gupta A, Bhakta S. An integrated   surrogate model for screening of drugs against Mycobacterium tuberculosis[J].   Journal of antimicrobial chemotherapy, 2012, 67(6): 1380-1391.<链接>

[87]

Saeki K. Feeder-Free Culture for   High Efficiency Production of Subculturable Vascular Endothelial Cells from   Human Embryonic Stem Cells[J]. Human Embryonic and Induced Pluripotent Stem   Cells: Lineage-Specific Differentiation Protocols, 2012: 277-294.<链接>

[88]

Yamazaki T, Okabe H, Kobayashi   S, et al. Cancer stem cell mass and process for production thereof: U.S.   Patent Application 13/878,181[P]. 2011-10-6.

[89]

Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood product: U.S. Patent Application   13/577,476[P]. 2011-2-4.

[90]

Sugii S, Kida Y, Berggren W T,   et al. Feeder-independent ips cell derivation from human and mouse adipose   stem cells[J]. Nature protocols, 2011, 6(3): 346.<链接>

[91]

Shinada T, Akimoto T, Zhu Y, et   al. Modulation of viability of live cells by focused ion‐beam exposure[J].   Biotechnology and bioengineering, 2011, 108(1): 222-225.<链接>

[92]

Huang M S, Chang W J, Huang H M,   et al. Effects of transportation time after extraction on the magnetic   cryopreservation of pulp cells of rat dental pulp[J]. Journal of Dental   Sciences, 2011, 6(1): 48-52.<链接>

[93]

Sato D, Suzuki Y, Kano T, et al.   Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse   therapy in IgA nephropathy patients[J]. Nephrology Dialysis Transplantation,   2011, 27(3): 1090-1097.<链接>

[94]

Kamada H, Kaku M, Kawata T, et   al. In-vitro and in-vivo study of periodontal ligament cryopreserved with a   magnetic field[J]. American Journal of Orthodontics and Dentofacial   Orthopedics, 2011, 140(6): 799-805.<链接>

[95]

Bui H T, Wakayama S, Mizutani E,   et al. Essential role of paternal chromatin in the regulation of   transcriptional activity during mouse preimplantation development[J].   Reproduction, 2011, 141(1): 67-77.<链接>

[96]

Takata Y, Kishine H, Sone T, et   al. Generation of iPS cells using a BacMam multigene expression system[J].   Cell structure and function, 2011, 36(2): 209-222.<链接>

[97]

Benko Z, Zhao R Y. Zeocin for   selection of bleMX6 resistance in fission yeast[J]. Biotechniques, 2011,   51(1): 57-60.<链接>

[98]

Abedini S, Kaku M, Kawata T, et   al. Effects of cryopreservation with a newly-developed magnetic field   programmed freezer on periodontal ligament cells and pulp tissues[J].   Cryobiology, 2011, 62(3): 181-187.<链接>

[99]

Oshima-Sudo N, Li Q, Hoshino Y,   et al. Optimized method for culturing outgrowth endothelial progenitor   cells[J]. Inflammation and Regeneration, 2011, 31(2): 219-227.<链接>

[100]

Araki N. Bioassay method for   antibody against thyroid-stimulating hormone receptor, measurement kit for   the antibody, and novel genetically modified cell for use in the bioassay   method or the measurement kit: U.S. Patent Application 13/381,402[P]. 2010-6-24.

[101]

Foster K, Chaddock J, Marks P,   et al. Fusion proteins: U.S. Patent 7,659,092[P]. 2010-2-9.

[102]

Mieno S, Boodhwani M, Robich M   P, et al. Effects of diabetes mellitus on VEGF‐induced proliferation response   in bone marrow derived endothelial progenitor cells[J]. Journal of cardiac   surgery, 2010, 25(5): 618-625.<链接>

[103]

Kaku M, Kamada H, Kawata T, et   al. Cryopreservation of periodontal ligament cells with magnetic field for   tooth banking[J]. Cryobiology, 2010, 61(1): 73-78.<链接>

[104]

Kawata T, Kaku M, Fujita T, et   al. Water molecule movement by a magnetic field in freezing for tooth   banking[J]. Biomedical Research, 2010, 21(4).<链接>

[105]

Lee S Y, Chiang P C, Tsai Y H,   et al. Effects of cryopreservation of intact teeth on the isolated dental   pulp stem cells[J]. Journal of Endodontics, 2010, 36(8): 1336-1340.<链接>

[106]

Huang Y H, Yang J C, Wang C W,   et al. Dental stem cells and tooth banking for regenerative medicine[J].   Journal of Experimental & Clinical Medicine, 2010, 2(3):   111-117.<链接>

[107]

Kwon H J, Enomoto T, Shimogawara   M, et al. Benchmarks[J]. Biotechniques, 2010, 48: 460-462.<链接>

[108]

Shimizu Y, Takamori A,   Utsunomiya A, et al. Impaired Tax‐specific T‐cell responses with insufficient   control of HTLV‐1 in a subgroup of individuals at asymptomatic and smoldering   stages[J]. Cancer science, 2009, 100(3): 481-489.<链接>

[109]

Park H S, Cho S G, Park M J, et   al. Bone marrow T cells are superior to splenic T cells to induce chimeric   conversion after non-myeloablative bone marrow transplantation[J]. The Korean   journal of internal medicine, 2009, 24(3): 252.<链接>

[110]

Enosawa S, Miyamoto Y, Ikeya T.   Frozen cell immobilized product, primary hepatocyte culture tool, and method   for producing primary hepatocyte culture tool: U.S. Patent Application   12/738,809[P]. 2008-9-11.

[111]

DePinho R A, Stommel J M.   Receptor tyrosine kinase profiling: U.S. Patent Application 12/450,820[P].   2008-4-11.

[112]

Mieno S, Clements R T, Boodhwani   M, et al. Characteristics and Function of Cryopreserved Bone Marrow–Derived   Endothelial Progenitor Cells[J]. The Annals of thoracic surgery, 2008, 85(4):   1361-1366.<链接>

[113]

Warren C. The Response of HN4   Cells to Porphyromonas gingivalis DNA[D]. , 2008.

[114]

Hikichi T, Wakayama S, Mizutani   E, et al. Differentiation potential of parthenogenetic embryonic stem cells   is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接>

[115]

Zaidi S K, Pande S, Pratap J, et   al. Runx2 deficiency and defective subnuclear targeting bypass senescence to   promote immortalization and tumorigenic potential[J]. Proceedings of the   National Academy of Sciences, 2007, 104(50): 19861-19866.<链接>

[116]

Hikichi T, Wakayama S, Mizutani   E, et al. Differentiation potential of parthenogenetic embryonic stem cells   is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接>

[117]

Liu D G, Kobayashi T, Onishi A,   et al. Relation between human decay‐accelerating factor (hDAF) expression in   pig cells and inhibition of human serum anti‐pig cytotoxicity: value of   highly expressed hDAF for xenotransplantation[J]. Xenotransplantation, 2007,   14(1): 67-73.<链接>

[118]

Ishii H, Iinuma A, Osumi K, et   al. Canine tumor treatment method, pharmaceutical formulation applied   thereto, and method of cryogenically preserving cells used therewith: U.S.   Patent Application 11/465,892[P]. 2006-8-21.

[119]

Hatoya S, Sugiyama Y, Torii R,   et al. Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC   of canine oocytes[J]. Theriogenology, 2006, 66(5): 1083-1090.<链接>

[120]

Sasaki M, Kato Y, Yamada H, et   al. Development of a novel serum‐free freezing medium for mammalian cells   using the silk protein sericin[J]. Biotechnology and applied biochemistry,   2005, 42(2): 183-188.<链接>

[121]

Haynes J E. Pseudonyms of   Authors: Including Anonyms and Initialisms[M]. JE Haynes, 1882.<链接>

产品列表
产品编号 产品名称 产品规格 产品等级 备注
302-14681 BAMBANKER
 BAMBANKER冻存液
120 mL
306-14684 BAMBANKER
 BAMBANKER冻存液
20 mLx5
306-95921 BAMBANKER Direct
 BAMBANKER直接冻存液
20 mL

小鼠精子冻存液和体外受精培养基 FERTIUP ® &CARD MEDIUM ®

小鼠精子冻存液和体外受精培养基
FERTIUP ® &CARD MEDIUM ®

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

小鼠精子冻存液和体外受精培养基小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

FERTIUP® 和 CARD MEDIUM®

该试剂可以保证和促进实验小鼠精子的冷冻保存效果,并能提高体外受精率。

FERTIUP® 小鼠精子冻存液
FERTIUP® 小鼠精子预孵培养基
CARD MEDIUM® 小鼠体外受精用培养

FERTIUP® PM -CARD MEDIUM® 套装

     


◆原理

 

       FERTIUP®(小鼠精子冻存液、小鼠精子预孵培养基)和 CARD MEDIUM®(高性能体外受精用培养基)是冻存小鼠精子、预孵培养、体外受精的高性能试剂。可以通过试剂冷冻保存精子,建立高效经济的小鼠系统(转基因小鼠等)。大大提高了传统 C57BL/6与129 品系小鼠“冻存-精子”的复苏和新鲜精子的体外受精率。

       使用了 FERTIUP® 和 CARD MEDIUM® 小鼠精子冻存・体外受精系统能够保证宝贵小鼠资源的安全性及可靠性。研究人员发现使用液氮低温保存小鼠品系的精子,成本约是单克隆保存的三十分之一。


小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

(图片是用 FERTIUP® 和 CARD MEDIUM® 的冻存精子进行体外受精而产出的小鼠)

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

FERTIUP® 和 CARD MEDIUM® 

系列

产品介绍

FERTIUP® 和 CARD MEDIUM® 是什么?

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®


FERTIUP® 和 CARD MEDIUM® 是能保证和促进实验小鼠精子的冷冻保存效果,并能提高体外受精率的试剂。产品系列如下:
1. FERTIUP® Mouse Sperm Cryoprotectant 小鼠精子冻存液 (KYD-001-EX)
该试剂用来冻存精子。

2. FERTIUP® Mouse Sperm Preincubation Medium 小鼠精子预孵培养 (KYD-002-EX)
→该试剂用于在体外受精前,预孵复苏后的精子。

3.CARD MEDIUM® Mouse Fertilization Medium 小鼠体外受精培养(KYD-003-EX)
该培养基用于体外受精

单独使用 FERTIUP 能得到较高的体外受精率,但如果配用上 CARD MEDIUM 就能达到更高的受精率,取得进一步成功。

◆优点・特色

FERTIUP®(小鼠精子冻存液)能防止冻存时的精子受到损伤。

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

FERTIUP®(小鼠精子预孵培养基)是能显著提高精子的受精能力。

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

CARD MEDIUM® 作用于卵子的透明带,使其更容易受精。

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®


●   受精率高达80%以上

●   有效维系转基因小鼠(Tg/KO)

●   降低人工、设备和养殖成本

●   缩短小鼠繁殖时间

●   高效繁殖了以往难以繁殖的品系

 

◆案例・应用

【案例1】用 FERTIUP® 和 CARD MEDIUM® 冷冻复苏精子的体外受精率

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®


【案例2】 不同品系小鼠的新鲜和冻存精子,使用了 FERTIUP® 预孵培养和 CARD MEDIUM® 后的体外受精率比较


小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

【使用流程】

       使用 FERTIUP®(小鼠精子冻存液),用冻存的精子代替新鲜的精子,能够保存小鼠的系统。此方法能大幅度减少饲养小鼠的成本及空间。复苏冻存的精子,使用 FERTIUP® (小鼠精子预孵培养基)和 CARD MEDIUM® ,进行高效受精,移植胚胎至代育雌鼠体内,才能繁衍后代。

 

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

 

       即使自然交配程序困难,但只要在 FERTIUP® (小鼠精子预孵培养基)中预孵从雄性小鼠取出新鲜的精子,接着和使用了 CARD MEDIUM® 的卵子进行体外受精,移植胚胎,就能在短期内繁殖小鼠。

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

 

       取替雄性小鼠,用冷藏运输试剂盒运输小鼠的附睾尾,即经济又安全。然后把从尾部取下的精子放在 FERTIUP®(小鼠精子预孵培养基)里预孵,接着和使用了 CARD MEDIUM®的卵子进行体外受精,移植胚胎,就能简便地预孵小鼠。

 

 

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®


 


       即使在低受精率的 129 和 BALB/c 系統中,ba取出的精子放在 FERTIUP®(小鼠精子预孵培养基)里预孵,与在 CARD MEDIUM® 的卵子进行体外受精,就能得到高受精率。


小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

   具体操作见“相关资料”。

 

 


【相关资料】


小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

FERTIUP® 和CARD MEDIUM® 系列

操作手册

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ® 小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ® 小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®CARD MEDIUM®.pdf

 注意:CARD MEDIUM®在体外受精时根据所用的精子的不同,调试方法液不一样。请详细阅读相关说明及正确使用试剂。

 


其他操作方法:


采用新鲜精子的体外受精方法

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®小鼠的体外受精方法(使用FERTIUP®孵育培养基和CARD MEDIUM®


使用冷冻运输的附睾尾的体外受精方法

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®使用冷藏运输试剂盒进行附睾尾的低温运输

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®取出冷藏运输后的附睾尾进行体外受精(使用FERTIUP®孵育培养基和CARD MEDIUM®

 

小鼠精子的冻存、融解、解冻精子的体外受精方法

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®冻存小鼠精子(使用FERTIUP®冻存液)

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®解冻已冻存的精子后进行体外受精(使用FERTIUP®孵育培养基和CARD MEDIUM®

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®用CARD以外的方法来冻结的精子进行体外受精(使用FERTIUP®孵育培养基和CARD MEDIUM®

产品选择

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®


小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®冻存小鼠精子
(使用FERTIUP®Cryoprotectant冻存液、
mHTF培养基、精子吸管、吸管接头和冷冻罐)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®使用复苏精子进行体外受精
(使用FERTIUP® Preincubation medium预孵培养基、CARD MEDIUM®体外受精培养基、mHTF 培养基和吸管接头)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®
低温采集运输附睾尾

(使用Cold Transport Kit冷藏运输试剂盒)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®使用低温运输的附睾尾精子进行体外受精
(使用FERTIUP®Preincubation medium预孵培养基: PM 和mHTF培养基)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®低温运输2-细胞期胚胎
(使用Cold Transport Kit冷藏运输试剂盒M2 和 KSOM)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®
体外受精
(使用FERTIUP® Preincubation medium预孵培养基、CARD MEDIUM® 体外受精培养基和
mHTF培养基)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®
简易的玻璃化冷冻保存小鼠胚胎
(使用DAP213 和 DMSO)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®胚胎移植入输卵管
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®用以前保存的冻存精子进行体外受精
(使用FERTIUP®Preincubation medium预孵培养基: PM, CARD MEDIUM® 体外受精培养基和mHTF培养基)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®复苏玻璃化冷冻后的胚胎的步骤
(使用0.25M 蔗糖and KSOM)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®
在氮气安瓿瓶里存储试剂和相关处理方法

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®玻璃化冷冻小鼠卵母细胞

(使mHTF培养基)
小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®
试剂的组成

1M DMSO, DAP213, 0.25M蔗糖, mHTF养基和 KSOM



产品系列


FERTIUP®

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

我们提供了各种尺寸方便你使用  (0.5ml, 1ml, 5*0.5ml, 5*1ml)。

请注意,一旦开封了安瓿瓶,建议尽快一次性使用完,不要留到下次使用。


小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

CARD MEDIUM®

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

[试剂盒的组成]
一个装有培养基的安瓿瓶(A):3 mL
一个装有粉末的小瓶(B):30 mg
一个1.5ml的塑料管(C)
一个1.5ml的塑料管(D)
一个2.5毫升的一次性注射器
一根针
一套过滤器(孔径:0.22μm)

套装产品(FERTIUP® + CARD MEDIUM®) 小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®

FERTIUP(R)   PM 1ML-CARD MEDIUM(R) 套装(KYD-004-EX)

[试剂盒的组成]
  一个装有培养基的安瓿瓶(A):3 mL
  一个装有粉末的小瓶r (B):30 mg
  一个1.5ml的塑料管(C)
  一个1.5ml的塑料管(D)
  一个2.5毫升的一次性注射器
  一根针
  一套过滤器(孔径:0.22μ)

一个装有PM的安瓿瓶 (1.0ml) 

FERTIUP(R)   PM 0.5ML-CARD MEDIUM(R) 套装(KYD-005-EX)

[试剂盒的组成]
  一个装有培养基的安瓿瓶(A):3 mL
  一个装有粉末的小瓶r (B):30 mg
  一个1.5ml的塑料管(C)
  一个1.5ml的塑料管(D)
  一个2.5毫升的一次性注射器
  一根针
  一套过滤器(孔径:0.22μ)
 
一个装有PM的安瓿瓶(0.5ml) 

小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ® 小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ® 小鼠精子冻存液和体外受精培养基                              FERTIUP ®  &CARD MEDIUM ®
ARK and KYD-宣传页

CARD&FERTIUP-宣传页

HyperOva-宣传页

○常规问题

Q1:    请告知 FERTIUP®小鼠精子冻存液、小鼠精子孵育培养基以及 CARD MEDIUM® 的保存方法以和保质期。
A1:    1. 请在 2~10℃ 冷藏 FERTIUP®小鼠精子孵育培养基和 CARD MEDIUM®
            2. 请在 18~28℃ 室温,保存 FERTIUP®小鼠精子冻存液 。
            3. 关于保质期,请查看与产品附带的说明书或者安瓿瓶上的注释。

Q2:    产品开封后能否少量分装冻存?
A2:    不可以。因为无法保证冻存后的质量,所以不建议此做法;

Q3:    产品里面含有对人体有害的物质吗?
A3:    不,里面不含有对人体有害的物质。

Q4:    要怎样购买 FERTIUP®和 CARD MEDIUM® 试剂呢?
A4:    如需购买,请与我司联系。

Q5:    产品的货期需要多久?
A5:    我司产品均为日本原装进口,货期3~4周。

Q6:    如果产品中混有杂质,可以更换吗?
A6:    我司从生产到出货都实行严谨的品质管理体制,但如果在产品中混入类似玻璃片等杂物这情况,请立即拍照并与我们联系,会有专人为您

            解决。


Q7:    发现未开封的小鼠精子冻存液中出现结晶的现象。
A7:    极少数情况下,受低温影响会产生结晶。只要在使用前1小时,把小鼠精子冻存液放进 37℃ 的孵育器中保温,
搅拌后结晶就会融解。融

            解后冻存液的效力不会产生任何问题。

○关于FERTIUP®系列产品的疑问

Q1:    采用FERTIUP®小鼠精子冻存液/小鼠精子孵育培养基冷冻而成的精子进行体外受精的C57BL/6小鼠虽然得到了较高体外受精率,但是否也

            能提高其他系统小鼠的体外受精率呢?

A1:    经验证,几乎都能提高 C57BL/6 小鼠之外的系统的体外受精率。

Q2:    FERTIUP®小鼠精子冻存液不会一次性用完,如果用试管分装保存,冷藏数周后还可以使用吗?
A2:    不可以。建议尽快使用完开封后的冻存液。请尽量购买可以一次性使用完的规格。

Q3:    FERTIUP®小鼠精子冻存液在保质期间呈乳白色,请问能够使用呢?
A3:    可以使用。之所以呈乳白色是因为保存液成分中的脱脂牛奶里的酪蛋白胶团沉淀。酪蛋白胶团对冻存精子没帮助,生产过程中我们已尽

            量去除,但长期保存是还是有可能出现酪蛋白胶团沉淀。

            轻拍安瓿瓶混合溶液时,冻存液可能呈乳白的,但是不会影响体外受精率。

Q4:    FERTIUP®系列产品的使用方法中,用流动液体石蜡会不会造成不良影响。
A4:    不会。因为一般的精子悬浊液(保存液中悬浊的精子)不会与流动石蜡混合,所以不会造成不良影响。

Q5:    冻存精子在FERTIUP®小鼠精子孵育培养基里培养后,在体外受精培养基上进行体外受精时,精子浓度是多少?

A5:    通常冻存液的精子浓度是 100,000~200,000 精子/μL,在小鼠培养基(90μL)里加入冻融后的精子悬浊液(10μL),被稀释了 10 倍后,

            精子孵育培养基中的精子浓度变成10,000~20,000精子/μL。

            然后,加入孵育精子悬浊液(10μL),又被稀释了 10 倍,体外受精培养基中精子的浓度是 1,000~2,000 精子/μL。

            最后冻融后的运动精子比例大约是 20%,体外受精培养基中运动精子的浓度是 200~400 精子/μL。

Q6:    我想下载 FERTIUP®系列产品说明,要去哪里下载呢?
A6:    请在官网查找,或者联系我们。

Q7:    请告知能确认精子冻结融解的方法。
A7:    1. 比较简单地确认冻融后精子的质量的方法是,冻结后在孵育培养基培养,以滴液周边活跃的精子数来作判断。

            2. 采取精子的方法是先确认未受精卵进行体外受精时,受精率是否最低达到 30%。
             (现销售的产品,在确保质量时,进行体外受精,已确认了 C57BL/6 小鼠的体外受精率达到 30% 以上。)

Q8:    请问有没有传统方法和在国外冻结精子的溶解方法?
A8:    请参考熊本大学的网上指南,里面提供了除 CARED 以外用冻结精子进行体外受精的方法。


○关于CARD MEDIUM®的疑问

Q1:    CARD MEDIUM®生产后能保质几个月呢?
A1:    目前为“生产后18个月”,今后若技术进步有可能进一步延长保质期。

Q2:    如果不与FERTIUP®系列一起使用的话,就不能得到较高的受精率吗?
A2:    是的。FERTIUP®对精子起作用,CARD MEDIUM®对卵子起作用,从而提高受精率。因此,如果两者同时使用,C57BL/6 小鼠就得到

            高达 80% 的受精率。


Q3:    除 C57BL/6 小鼠以外的系统也能得到很高的体外受精率吗?
A3:    可以。其他系统也能得到较高的体外受精率。

【参考文献】


[1] 

Takeo, T., Hoshii, T., Kondo, Y., Toyodome, H., Arima, H., Yamamura, KI., Irie, T. and Nakagata, N. Methyl-beta-cyclodextrin improves the fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol Reprod. 78(3):546-51. 2008.

[2] 

Takeo, T and Nakagata, N. Combination medium of cryoprotective agents containing L-glutamine and methyl-{beta}-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm. Lab Anim. 44(2):132-7. 2010


[3] 

Nakagata N. 2011. Cryopreservation of mouse spermatozoa and in vitro fertilization. Methods Mol Biol. 693: 57-734

[4] 

Cryopreservation of mouse spermatozoa and in vitro fertilization.Nakagata N.Methods Mol Biol. 2011 693:57-73. PMID: 21080274,<链接>

[5] 

Combination medium of cryoprotective agents containing L-glutamine and methyl-{beta}-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm.Takeo T,Nakagata N.Lab Anim. 2010 Apr;44(2):132-7. PMID: 20357317<链接>

[6] 

Short-term storage and transport at cold temperatures of 2-cell mouse embryos produced by cryopreserved sperm.Takeo T, Kondo T, Haruguchi Y, Fukumoto K,Nakagawa Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Shimizu N, Hasegawa T, Goto M, Miyachi H, Anzai M, Fujikawa R, Nomaru K, Kaneko T, Itagaki Y,Nakagata N.J Am Assoc Lab Anim Sci. 2010 Jul;49(4):415-9. PMID: 20819385<链接>

[7] 

Birth of mice from vitrified/warmed 2-cell embryos transported at a cold temperature.Takeo T, Kaneko T, Haruguchi Y, Fukumoto K, Machida H, Koga M, Nakagawa Y, Takeshita Y, Matsuguma T, Tsuchiyama S, Shimizu N, Hasegawa T, Goto M, Miyachi H, Anzai M, Nakatsukasa E, Nomaru K, Nakagata N.Cryobiology. 2009 Apr;58(2):196-202. PMID: 19168045<链接>

[8] 

Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells.Takeo T, Hoshii T, Kondo Y, Toyodome H, Arima H, Yamamura K, Irie T, Nakagata N.Biol Reprod. 2008 Mar;78(3): 546-51. PMID: 18046011<链接>

产品列表
产品编号 产品名称 产品规格 产品等级 备注
KYD-001-EX FERTIUP((R)) Mouse Sperm Cryoprotectant: CPA
小鼠精子冻存液
1 ml
KYD-001-EX-X5 FERTIUP((R)) Mouse Sperm Cryoprotectant: CPAx5
小鼠精子冻存液
5*1 ml
KYD-001-05-EX FERTIUP((R)) Mouse Sperm Cryoprotectant: CPA
小鼠精子冻存液
0.5 ml
KYD-001-05-EX-X5 FERTIUP((R)) Mouse Sperm Cryoprotectant: CPAx5
小鼠精子冻存液
5*0.5 ml
KYD-002-EX FERTIUP((R)) Mouse Sperm Preincubation Medium: PM
小鼠精子预孵培养液
1 ml
KYD-002-EX-X5 FERTIUP((R)) Mouse Sperm Preincubation Medium: PM
小鼠精子预孵培养液
5*1 ml
KYD-002-05-EX-X5 FERTIUP((R)) Mouse Sperm Preincubation Medium: PM
小鼠精子预孵培养液
5*0.5 ml
KYD-003-EX CARD MEDIUM((R))
小鼠精子体外受精稳定剂
1 kit
KYD-004-EX FERTIUP((R)) PM 1ML-CARD MEDIUM((R)) set
小鼠精子预孵培养液 &受精液 套装
1 set
KYD-005-EX FERTIUP((R)) PM 0.5ML-CARD MEDIUM((R)) set
小鼠精子预孵培养液 &受精液 套装
1 set

Bambanker无血清细胞冻存液—免费使用

Bambanker无血清即用型细胞冻存液——给细胞更多的呵护

Serum-free for sensitive cell lines, like ES and primary cells,Gradual or programmable freezing is no longer necessary

Bambanker欧洲专利产品(专利号1347040)

Bambanker产品特点

ü  即用型细胞冻存液,无需程序性降温

ü  尤其适用于各类敏感细胞,如ES细胞、原代细胞

ü  高复苏率(请见对比图效果)

ü  可-80℃或液氮中长期冻存,稳定保存1年以上

ü  无血清,成份确定,避免由支原体、病毒、朊病毒及其他病毒颗粒引发的污染

ü  产品经无菌检测,符合日本药典

ü  产品可2~8 ℃稳定保存2年

Bambanker操作流程使用说明:

收集对数生长期的细胞(5 x 105 ~ 1 x 107

用1ml Bambanker重悬细胞,置于冻存管中,无需预冷。

产品订购信息:

品名

货号

规格

BambankerTM

BB01

120ml

系列冻存液:

品名

描述

货号

规格

BambankerTM Direct

细胞冻存时无需离心,非常适用于杂交瘤细胞

BBD01

20ml

BambankerTM HRM

使用人血清白蛋白,无动物源性

BBH01

20ml

Bambanker使用发表文献(部分)

ü  T. Hikichi et al., Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer. Stem cells25, 46 (Jan, 2007).

ü  S. Mieno et al., Characteristics and function of cryopreserved bone marrow-derived endothelial progenitor cells. The Annals of thoracic surgery85, 1361 (Apr, 2008).

ü  S. Hatoya et al., Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC of canine oocytes. Theriogenology66, 1083 (Sep 15, 2006).

ü  D. Liu et al., Relation between human decay-accelerating factor (hDAF) expression in pig cells andinhibition of human serum anti-pig cytotoxicity: value of highly expressed hDAF for xenotransplantation. Xenotransplantation14, 67 (Jan, 2007).

ü  S. K. Zaidi et al., Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential. Proceedings of the National Academy of Sciences of the United States of America104, 19861 (Dec 11, 2007).

ü  S. Mieno et al., Effects of diabetes mellitus on VEGF-induced proliferation response in bone marrow derived endothelial progenitor cells. Journal of cardiac surgery25, 618 (Sep, 2010).

ü  Y. Shimizu et al., Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer science100, 481 (Mar, 2009).

Bambanker相关产品

王牌常规冻存试剂DMSO,细胞培养级,质优价廉,来自德国Applichem(货号A3762)

给细胞更多的安全保护——支原体污染检测/清除/预防系列

Nature推荐PCR假阳性污染完美解决方案——DNA-ExitusPlusTM

上海金畔生物科技有限公司更多产品可咨询全国客服电话021-50837765